Description: Implication in terms of implication and biconditional. (Contributed by NM, 31-Mar-1994) (Proof shortened by Wolf Lammen, 24-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ibib | |- ( ( ph -> ps ) <-> ( ph -> ( ph <-> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
|
2 | 1 | pm5.74i | |- ( ( ph -> ps ) <-> ( ph -> ( ph <-> ps ) ) ) |