Description: Implication in terms of implication and biconditional. (Contributed by NM, 29-Apr-2005) (Proof shortened by Wolf Lammen, 21-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ibibr | |- ( ( ph -> ps ) <-> ( ph -> ( ps <-> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.501 | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
|
| 2 | bicom | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) |
|
| 3 | 1 2 | bitrdi | |- ( ph -> ( ps <-> ( ps <-> ph ) ) ) |
| 4 | 3 | pm5.74i | |- ( ( ph -> ps ) <-> ( ph -> ( ps <-> ph ) ) ) |