Description: Implication in terms of implication and biconditional. (Contributed by NM, 29-Apr-2005) (Proof shortened by Wolf Lammen, 21-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ibibr | |- ( ( ph -> ps ) <-> ( ph -> ( ps <-> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
|
2 | bicom | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) |
|
3 | 1 2 | bitrdi | |- ( ph -> ( ps <-> ( ps <-> ph ) ) ) |
4 | 3 | pm5.74i | |- ( ( ph -> ps ) <-> ( ph -> ( ps <-> ph ) ) ) |