Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
mbfconst |
|- ( ( A e. dom vol /\ 0 e. CC ) -> ( A X. { 0 } ) e. MblFn ) |
3 |
1 2
|
mpan2 |
|- ( A e. dom vol -> ( A X. { 0 } ) e. MblFn ) |
4 |
|
ax-icn |
|- _i e. CC |
5 |
|
ine0 |
|- _i =/= 0 |
6 |
|
elfzelz |
|- ( k e. ( 0 ... 3 ) -> k e. ZZ ) |
7 |
6
|
ad2antlr |
|- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> k e. ZZ ) |
8 |
|
expclz |
|- ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( _i ^ k ) e. CC ) |
9 |
|
expne0i |
|- ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( _i ^ k ) =/= 0 ) |
10 |
8 9
|
div0d |
|- ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( 0 / ( _i ^ k ) ) = 0 ) |
11 |
4 5 7 10
|
mp3an12i |
|- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> ( 0 / ( _i ^ k ) ) = 0 ) |
12 |
11
|
fveq2d |
|- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` 0 ) ) |
13 |
|
re0 |
|- ( Re ` 0 ) = 0 |
14 |
12 13
|
eqtrdi |
|- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = 0 ) |
15 |
14
|
itgvallem3 |
|- ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) = 0 ) |
16 |
|
0re |
|- 0 e. RR |
17 |
15 16
|
eqeltrdi |
|- ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
18 |
17
|
ralrimiva |
|- ( A e. dom vol -> A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
19 |
|
eqidd |
|- ( A e. dom vol -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) |
20 |
|
eqidd |
|- ( ( A e. dom vol /\ x e. A ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` ( 0 / ( _i ^ k ) ) ) ) |
21 |
|
c0ex |
|- 0 e. _V |
22 |
21
|
fconst |
|- ( A X. { 0 } ) : A --> { 0 } |
23 |
|
fdm |
|- ( ( A X. { 0 } ) : A --> { 0 } -> dom ( A X. { 0 } ) = A ) |
24 |
22 23
|
mp1i |
|- ( A e. dom vol -> dom ( A X. { 0 } ) = A ) |
25 |
21
|
fvconst2 |
|- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
26 |
25
|
adantl |
|- ( ( A e. dom vol /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
27 |
19 20 24 26
|
isibl |
|- ( A e. dom vol -> ( ( A X. { 0 } ) e. L^1 <-> ( ( A X. { 0 } ) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) ) ) |
28 |
3 18 27
|
mpbir2and |
|- ( A e. dom vol -> ( A X. { 0 } ) e. L^1 ) |