Step |
Hyp |
Ref |
Expression |
1 |
|
iblcn.1 |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
2 |
1
|
ismbfcn2 |
|- ( ph -> ( ( x e. A |-> B ) e. MblFn <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) ) ) |
3 |
2
|
anbi1d |
|- ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) ) |
4 |
|
3anass |
|- ( ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) <-> ( ( x e. A |-> B ) e. MblFn /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
5 |
|
an4 |
|- ( ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
6 |
3 4 5
|
3bitr4g |
|- ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) ) |
7 |
|
eqid |
|- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
8 |
|
eqid |
|- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) |
9 |
|
eqid |
|- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) |
10 |
|
eqid |
|- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) |
11 |
7 8 9 10 1
|
iblcnlem1 |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
12 |
1
|
recld |
|- ( ( ph /\ x e. A ) -> ( Re ` B ) e. RR ) |
13 |
12
|
iblrelem |
|- ( ph -> ( ( x e. A |-> ( Re ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) ) |
14 |
|
3anass |
|- ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) ) |
15 |
13 14
|
bitrdi |
|- ( ph -> ( ( x e. A |-> ( Re ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) ) ) |
16 |
1
|
imcld |
|- ( ( ph /\ x e. A ) -> ( Im ` B ) e. RR ) |
17 |
16
|
iblrelem |
|- ( ph -> ( ( x e. A |-> ( Im ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) |
18 |
|
3anass |
|- ( ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) |
19 |
17 18
|
bitrdi |
|- ( ph -> ( ( x e. A |-> ( Im ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
20 |
15 19
|
anbi12d |
|- ( ph -> ( ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) ) |
21 |
6 11 20
|
3bitr4d |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) ) ) |