Metamath Proof Explorer


Theorem iblcn

Description: Integrability of a complex function. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypothesis iblcn.1
|- ( ( ph /\ x e. A ) -> B e. CC )
Assertion iblcn
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) ) )

Proof

Step Hyp Ref Expression
1 iblcn.1
 |-  ( ( ph /\ x e. A ) -> B e. CC )
2 1 ismbfcn2
 |-  ( ph -> ( ( x e. A |-> B ) e. MblFn <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) ) )
3 2 anbi1d
 |-  ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) )
4 3anass
 |-  ( ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) <-> ( ( x e. A |-> B ) e. MblFn /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) )
5 an4
 |-  ( ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) )
6 3 4 5 3bitr4g
 |-  ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) )
7 eqid
 |-  ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) )
8 eqid
 |-  ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) )
9 eqid
 |-  ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) )
10 eqid
 |-  ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) )
11 7 8 9 10 1 iblcnlem1
 |-  ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) )
12 1 recld
 |-  ( ( ph /\ x e. A ) -> ( Re ` B ) e. RR )
13 12 iblrelem
 |-  ( ph -> ( ( x e. A |-> ( Re ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) )
14 3anass
 |-  ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) )
15 13 14 bitrdi
 |-  ( ph -> ( ( x e. A |-> ( Re ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) ) )
16 1 imcld
 |-  ( ( ph /\ x e. A ) -> ( Im ` B ) e. RR )
17 16 iblrelem
 |-  ( ph -> ( ( x e. A |-> ( Im ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) )
18 3anass
 |-  ( ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) )
19 17 18 bitrdi
 |-  ( ph -> ( ( x e. A |-> ( Im ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) )
20 15 19 anbi12d
 |-  ( ph -> ( ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) )
21 6 11 20 3bitr4d
 |-  ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) ) )