| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iblcncfioo.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							iblcncfioo.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							iblcncfioo.f | 
							 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 4 | 
							
								
							 | 
							iblcncfioo.l | 
							 |-  ( ph -> L e. ( F limCC B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							iblcncfioo.r | 
							 |-  ( ph -> R e. ( F limCC A ) )  | 
						
						
							| 6 | 
							
								
							 | 
							cncff | 
							 |-  ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							syl | 
							 |-  ( ph -> F : ( A (,) B ) --> CC )  | 
						
						
							| 8 | 
							
								7
							 | 
							feqmptd | 
							 |-  ( ph -> F = ( x e. ( A (,) B ) |-> ( F ` x ) ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							eliooord | 
							 |-  ( x e. ( A (,) B ) -> ( A < x /\ x < B ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simpld | 
							 |-  ( x e. ( A (,) B ) -> A < x )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> A < x )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							gtned | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A )  | 
						
						
							| 14 | 
							
								13
							 | 
							neneqd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A )  | 
						
						
							| 15 | 
							
								14
							 | 
							iffalsed | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							elioore | 
							 |-  ( x e. ( A (,) B ) -> x e. RR )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR )  | 
						
						
							| 18 | 
							
								10
							 | 
							simprd | 
							 |-  ( x e. ( A (,) B ) -> x < B )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x < B )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							ltned | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x =/= B )  | 
						
						
							| 21 | 
							
								20
							 | 
							neneqd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> -. x = B )  | 
						
						
							| 22 | 
							
								21
							 | 
							iffalsed | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) )  | 
						
						
							| 23 | 
							
								15 22
							 | 
							eqtrd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eqcomd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) = ( x e. ( A (,) B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) )  | 
						
						
							| 26 | 
							
								8 25
							 | 
							eqtrd | 
							 |-  ( ph -> F = ( x e. ( A (,) B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							ioossicc | 
							 |-  ( A (,) B ) C_ ( A [,] B )  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) )  | 
						
						
							| 29 | 
							
								
							 | 
							ioombl | 
							 |-  ( A (,) B ) e. dom vol  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) e. dom vol )  | 
						
						
							| 31 | 
							
								
							 | 
							iftrue | 
							 |-  ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantl | 
							 |-  ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )  | 
						
						
							| 33 | 
							
								
							 | 
							limccl | 
							 |-  ( F limCC A ) C_ CC  | 
						
						
							| 34 | 
							
								33 5
							 | 
							sselid | 
							 |-  ( ph -> R e. CC )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ph /\ x = A ) -> R e. CC )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 38 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad2antlr | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							iftrue | 
							 |-  ( x = B -> if ( x = B , L , ( F ` x ) ) = L )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = B , L , ( F ` x ) ) = L )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L )  | 
						
						
							| 43 | 
							
								
							 | 
							limccl | 
							 |-  ( F limCC B ) C_ CC  | 
						
						
							| 44 | 
							
								43 4
							 | 
							sselid | 
							 |-  ( ph -> L e. CC )  | 
						
						
							| 45 | 
							
								44
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> L e. CC )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantllr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 48 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ph )  | 
						
						
							| 49 | 
							
								1
							 | 
							rexrd | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* )  | 
						
						
							| 51 | 
							
								2
							 | 
							rexrd | 
							 |-  ( ph -> B e. RR* )  | 
						
						
							| 52 | 
							
								48 51
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* )  | 
						
						
							| 53 | 
							
								
							 | 
							eliccxr | 
							 |-  ( x e. ( A [,] B ) -> x e. RR* )  | 
						
						
							| 54 | 
							
								53
							 | 
							ad3antlr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR* )  | 
						
						
							| 55 | 
							
								50 52 54
							 | 
							3jca | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( A e. RR* /\ B e. RR* /\ x e. RR* ) )  | 
						
						
							| 56 | 
							
								1
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR )  | 
						
						
							| 57 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR )  | 
						
						
							| 58 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR )  | 
						
						
							| 59 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) )  | 
						
						
							| 60 | 
							
								
							 | 
							eliccre | 
							 |-  ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR )  | 
						
						
							| 61 | 
							
								57 58 59 60
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR )  | 
						
						
							| 63 | 
							
								1 2
							 | 
							jca | 
							 |-  ( ph -> ( A e. RR /\ B e. RR ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( A e. RR /\ B e. RR ) )  | 
						
						
							| 65 | 
							
								
							 | 
							elicc2 | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							syl | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) )  | 
						
						
							| 67 | 
							
								59 66
							 | 
							mpbid | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							simp2d | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x )  | 
						
						
							| 70 | 
							
								
							 | 
							df-ne | 
							 |-  ( x =/= A <-> -. x = A )  | 
						
						
							| 71 | 
							
								70
							 | 
							biimpri | 
							 |-  ( -. x = A -> x =/= A )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A )  | 
						
						
							| 73 | 
							
								56 62 69 72
							 | 
							leneltd | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x )  | 
						
						
							| 74 | 
							
								73
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x )  | 
						
						
							| 75 | 
							
								
							 | 
							nesym | 
							 |-  ( B =/= x <-> -. x = B )  | 
						
						
							| 76 | 
							
								75
							 | 
							biimpri | 
							 |-  ( -. x = B -> B =/= x )  | 
						
						
							| 77 | 
							
								76
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x )  | 
						
						
							| 78 | 
							
								67
							 | 
							simp3d | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B )  | 
						
						
							| 79 | 
							
								61 58 78
							 | 
							3jca | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ B e. RR /\ x <_ B ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> ( x e. RR /\ B e. RR /\ x <_ B ) )  | 
						
						
							| 81 | 
							
								
							 | 
							leltne | 
							 |-  ( ( x e. RR /\ B e. RR /\ x <_ B ) -> ( x < B <-> B =/= x ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> ( x < B <-> B =/= x ) )  | 
						
						
							| 83 | 
							
								77 82
							 | 
							mpbird | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantlr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B )  | 
						
						
							| 85 | 
							
								74 84
							 | 
							jca | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( A < x /\ x < B ) )  | 
						
						
							| 86 | 
							
								
							 | 
							elioo3g | 
							 |-  ( x e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) /\ ( A < x /\ x < B ) ) )  | 
						
						
							| 87 | 
							
								55 85 86
							 | 
							sylanbrc | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) )  | 
						
						
							| 88 | 
							
								48 87
							 | 
							jca | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ph /\ x e. ( A (,) B ) ) )  | 
						
						
							| 89 | 
							
								7
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC )  | 
						
						
							| 90 | 
							
								23 89
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 91 | 
							
								88 90
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 92 | 
							
								47 91
							 | 
							pm2.61dan | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 93 | 
							
								37 92
							 | 
							pm2.61dan | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 94 | 
							
								
							 | 
							nfv | 
							 |-  F/ x ph  | 
						
						
							| 95 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 96 | 
							
								94 95 1 2 3 4 5
							 | 
							cncfiooicc | 
							 |-  ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 97 | 
							
								
							 | 
							cniccibl | 
							 |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. L^1 )  | 
						
						
							| 98 | 
							
								1 2 96 97
							 | 
							syl3anc | 
							 |-  ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. L^1 )  | 
						
						
							| 99 | 
							
								28 30 93 98
							 | 
							iblss | 
							 |-  ( ph -> ( x e. ( A (,) B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. L^1 )  | 
						
						
							| 100 | 
							
								26 99
							 | 
							eqeltrd | 
							 |-  ( ph -> F e. L^1 )  |