Metamath Proof Explorer


Theorem iblconstmpt

Description: A constant function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iblconstmpt
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. CC ) -> ( x e. A |-> B ) e. L^1 )

Proof

Step Hyp Ref Expression
1 fconstmpt
 |-  ( A X. { B } ) = ( x e. A |-> B )
2 iblconst
 |-  ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. CC ) -> ( A X. { B } ) e. L^1 )
3 1 2 eqeltrrid
 |-  ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. CC ) -> ( x e. A |-> B ) e. L^1 )