| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbf0 |  |-  (/) e. MblFn | 
						
							| 2 |  | fconstmpt |  |-  ( RR X. { 0 } ) = ( x e. RR |-> 0 ) | 
						
							| 3 | 2 | eqcomi |  |-  ( x e. RR |-> 0 ) = ( RR X. { 0 } ) | 
						
							| 4 | 3 | fveq2i |  |-  ( S.2 ` ( x e. RR |-> 0 ) ) = ( S.2 ` ( RR X. { 0 } ) ) | 
						
							| 5 |  | itg20 |  |-  ( S.2 ` ( RR X. { 0 } ) ) = 0 | 
						
							| 6 | 4 5 | eqtri |  |-  ( S.2 ` ( x e. RR |-> 0 ) ) = 0 | 
						
							| 7 |  | 0re |  |-  0 e. RR | 
						
							| 8 | 6 7 | eqeltri |  |-  ( S.2 ` ( x e. RR |-> 0 ) ) e. RR | 
						
							| 9 | 8 | rgenw |  |-  A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR | 
						
							| 10 |  | noel |  |-  -. x e. (/) | 
						
							| 11 | 10 | intnanr |  |-  -. ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) | 
						
							| 12 | 11 | iffalsei |  |-  if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) = 0 | 
						
							| 13 | 12 | eqcomi |  |-  0 = if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) | 
						
							| 14 | 13 | a1i |  |-  ( ( T. /\ x e. RR ) -> 0 = if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) | 
						
							| 15 | 14 | mpteq2dva |  |-  ( T. -> ( x e. RR |-> 0 ) = ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) | 
						
							| 16 |  | eqidd |  |-  ( ( T. /\ x e. (/) ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` ( 0 / ( _i ^ k ) ) ) ) | 
						
							| 17 |  | dm0 |  |-  dom (/) = (/) | 
						
							| 18 | 17 | a1i |  |-  ( T. -> dom (/) = (/) ) | 
						
							| 19 | 10 | intnan |  |-  -. ( T. /\ x e. (/) ) | 
						
							| 20 | 19 | pm2.21i |  |-  ( ( T. /\ x e. (/) ) -> ( (/) ` x ) = 0 ) | 
						
							| 21 | 15 16 18 20 | isibl |  |-  ( T. -> ( (/) e. L^1 <-> ( (/) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR ) ) ) | 
						
							| 22 | 21 | mptru |  |-  ( (/) e. L^1 <-> ( (/) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR ) ) | 
						
							| 23 | 1 9 22 | mpbir2an |  |-  (/) e. L^1 |