Step |
Hyp |
Ref |
Expression |
1 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
2 |
|
ax-resscn |
|- RR C_ CC |
3 |
1 2
|
sstrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ CC ) |
4 |
3
|
sselda |
|- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
5 |
4
|
3adantl3 |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
6 |
5
|
sincld |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( sin ` x ) e. CC ) |
7 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
8 |
6 7
|
expcld |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
9 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ N ) ) = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
10 |
9
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
11 |
5 8 10
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
12 |
11
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) |
13 |
12
|
mpteq2dva |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) ) |
14 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
15 |
|
nfcv |
|- F/_ x sin |
16 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
17 |
16
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> sin e. ( CC -cn-> CC ) ) |
18 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> N e. NN0 ) |
19 |
15 17 18
|
expcnfg |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
20 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A [,] B ) C_ CC ) |
21 |
14 19 20
|
cncfmptss |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
22 |
13 21
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
23 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
24 |
22 23
|
syld3an3 |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |