| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iccssre | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )  | 
						
						
							| 2 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sstrdi | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ CC )  | 
						
						
							| 4 | 
							
								3
							 | 
							sselda | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ x e. ( A [,] B ) ) -> x e. CC )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adantl3 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> x e. CC )  | 
						
						
							| 6 | 
							
								5
							 | 
							sincld | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( sin ` x ) e. CC )  | 
						
						
							| 7 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> N e. NN0 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							expcld | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) e. CC )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. CC |-> ( ( sin ` x ) ^ N ) ) = ( x e. CC |-> ( ( sin ` x ) ^ N ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fvmpt2 | 
							 |-  ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) )  | 
						
						
							| 11 | 
							
								5 8 10
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							mpteq2dva | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							nfmpt1 | 
							 |-  F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) )  | 
						
						
							| 15 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x sin  | 
						
						
							| 16 | 
							
								
							 | 
							sincn | 
							 |-  sin e. ( CC -cn-> CC )  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> sin e. ( CC -cn-> CC ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> N e. NN0 )  | 
						
						
							| 19 | 
							
								15 17 18
							 | 
							expcnfg | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 20 | 
							
								3
							 | 
							3adant3 | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A [,] B ) C_ CC )  | 
						
						
							| 21 | 
							
								14 19 20
							 | 
							cncfmptss | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 22 | 
							
								13 21
							 | 
							eqeltrd | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 23 | 
							
								
							 | 
							cniccibl | 
							 |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syld3an3 | 
							 |-  ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 )  |