Step |
Hyp |
Ref |
Expression |
1 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
2 |
1
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A (,) B ) C_ ( A [,] B ) ) |
3 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
4 |
3
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A (,) B ) e. dom vol ) |
5 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
6 |
|
ax-resscn |
|- RR C_ CC |
7 |
5 6
|
sstrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ CC ) |
8 |
7
|
sselda |
|- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
9 |
8
|
3adantl3 |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
10 |
9
|
sincld |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( sin ` x ) e. CC ) |
11 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
12 |
10 11
|
expcld |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
13 |
|
ibliccsinexp |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
14 |
2 4 12 13
|
iblss |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A (,) B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |