Metamath Proof Explorer


Theorem iblmbf

Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Assertion iblmbf
|- ( F e. L^1 -> F e. MblFn )

Proof

Step Hyp Ref Expression
1 df-ibl
 |-  L^1 = { f e. MblFn | A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR }
2 1 ssrab3
 |-  L^1 C_ MblFn
3 2 sseli
 |-  ( F e. L^1 -> F e. MblFn )