| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgadd.1 |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 2 |  | itgadd.2 |  |-  ( ph -> ( x e. A |-> B ) e. L^1 ) | 
						
							| 3 |  | itgadd.3 |  |-  ( ( ph /\ x e. A ) -> C e. V ) | 
						
							| 4 |  | itgadd.4 |  |-  ( ph -> ( x e. A |-> C ) e. L^1 ) | 
						
							| 5 |  | iblmbf |  |-  ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 7 | 6 1 | mbfmptcl |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 8 |  | iblmbf |  |-  ( ( x e. A |-> C ) e. L^1 -> ( x e. A |-> C ) e. MblFn ) | 
						
							| 9 | 4 8 | syl |  |-  ( ph -> ( x e. A |-> C ) e. MblFn ) | 
						
							| 10 | 9 3 | mbfmptcl |  |-  ( ( ph /\ x e. A ) -> C e. CC ) | 
						
							| 11 | 7 10 | negsubd |  |-  ( ( ph /\ x e. A ) -> ( B + -u C ) = ( B - C ) ) | 
						
							| 12 | 11 | mpteq2dva |  |-  ( ph -> ( x e. A |-> ( B + -u C ) ) = ( x e. A |-> ( B - C ) ) ) | 
						
							| 13 | 10 | negcld |  |-  ( ( ph /\ x e. A ) -> -u C e. CC ) | 
						
							| 14 | 3 4 | iblneg |  |-  ( ph -> ( x e. A |-> -u C ) e. L^1 ) | 
						
							| 15 | 7 2 13 14 | ibladd |  |-  ( ph -> ( x e. A |-> ( B + -u C ) ) e. L^1 ) | 
						
							| 16 | 12 15 | eqeltrrd |  |-  ( ph -> ( x e. A |-> ( B - C ) ) e. L^1 ) |