Step |
Hyp |
Ref |
Expression |
1 |
|
difreicc |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) = ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) |
2 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
3 |
|
iooretop |
|- ( -oo (,) A ) e. ( topGen ` ran (,) ) |
4 |
|
iooretop |
|- ( B (,) +oo ) e. ( topGen ` ran (,) ) |
5 |
|
unopn |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( -oo (,) A ) e. ( topGen ` ran (,) ) /\ ( B (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. ( topGen ` ran (,) ) ) |
6 |
2 3 4 5
|
mp3an |
|- ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. ( topGen ` ran (,) ) |
7 |
1 6
|
eqeltrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) e. ( topGen ` ran (,) ) ) |
8 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
9 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
10 |
9
|
iscld2 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) <-> ( RR \ ( A [,] B ) ) e. ( topGen ` ran (,) ) ) ) |
11 |
2 8 10
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) <-> ( RR \ ( A [,] B ) ) e. ( topGen ` ran (,) ) ) ) |
12 |
7 11
|
mpbird |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |