| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icccmp.1 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
icccmp.2 |
|- T = ( J |`t ( A [,] B ) ) |
| 3 |
|
icccmp.3 |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 4 |
|
icccmp.4 |
|- S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } |
| 5 |
|
icccmp.5 |
|- ( ph -> A e. RR ) |
| 6 |
|
icccmp.6 |
|- ( ph -> B e. RR ) |
| 7 |
|
icccmp.7 |
|- ( ph -> A <_ B ) |
| 8 |
|
icccmp.8 |
|- ( ph -> U C_ J ) |
| 9 |
|
icccmp.9 |
|- ( ph -> ( A [,] B ) C_ U. U ) |
| 10 |
|
icccmp.10 |
|- ( ph -> V e. U ) |
| 11 |
|
icccmp.11 |
|- ( ph -> C e. RR+ ) |
| 12 |
|
icccmp.12 |
|- ( ph -> ( G ( ball ` D ) C ) C_ V ) |
| 13 |
|
icccmp.13 |
|- G = sup ( S , RR , < ) |
| 14 |
|
icccmp.14 |
|- R = if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) |
| 15 |
4
|
ssrab3 |
|- S C_ ( A [,] B ) |
| 16 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 17 |
5 6 16
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 18 |
15 17
|
sstrid |
|- ( ph -> S C_ RR ) |
| 19 |
1 2 3 4 5 6 7 8 9
|
icccmplem1 |
|- ( ph -> ( A e. S /\ A. y e. S y <_ B ) ) |
| 20 |
19
|
simpld |
|- ( ph -> A e. S ) |
| 21 |
20
|
ne0d |
|- ( ph -> S =/= (/) ) |
| 22 |
19
|
simprd |
|- ( ph -> A. y e. S y <_ B ) |
| 23 |
|
brralrspcev |
|- ( ( B e. RR /\ A. y e. S y <_ B ) -> E. n e. RR A. y e. S y <_ n ) |
| 24 |
6 22 23
|
syl2anc |
|- ( ph -> E. n e. RR A. y e. S y <_ n ) |
| 25 |
18 21 24
|
suprcld |
|- ( ph -> sup ( S , RR , < ) e. RR ) |
| 26 |
13 25
|
eqeltrid |
|- ( ph -> G e. RR ) |
| 27 |
11
|
rphalfcld |
|- ( ph -> ( C / 2 ) e. RR+ ) |
| 28 |
26 27
|
ltaddrpd |
|- ( ph -> G < ( G + ( C / 2 ) ) ) |
| 29 |
27
|
rpred |
|- ( ph -> ( C / 2 ) e. RR ) |
| 30 |
26 29
|
readdcld |
|- ( ph -> ( G + ( C / 2 ) ) e. RR ) |
| 31 |
26 30
|
ltnled |
|- ( ph -> ( G < ( G + ( C / 2 ) ) <-> -. ( G + ( C / 2 ) ) <_ G ) ) |
| 32 |
28 31
|
mpbid |
|- ( ph -> -. ( G + ( C / 2 ) ) <_ G ) |
| 33 |
30 6
|
ifcld |
|- ( ph -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) e. RR ) |
| 34 |
14 33
|
eqeltrid |
|- ( ph -> R e. RR ) |
| 35 |
18 21 24 20
|
suprubd |
|- ( ph -> A <_ sup ( S , RR , < ) ) |
| 36 |
35 13
|
breqtrrdi |
|- ( ph -> A <_ G ) |
| 37 |
26 30 28
|
ltled |
|- ( ph -> G <_ ( G + ( C / 2 ) ) ) |
| 38 |
5 26 30 36 37
|
letrd |
|- ( ph -> A <_ ( G + ( C / 2 ) ) ) |
| 39 |
|
breq2 |
|- ( ( G + ( C / 2 ) ) = if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) -> ( A <_ ( G + ( C / 2 ) ) <-> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) ) |
| 40 |
|
breq2 |
|- ( B = if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) -> ( A <_ B <-> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) ) |
| 41 |
39 40
|
ifboth |
|- ( ( A <_ ( G + ( C / 2 ) ) /\ A <_ B ) -> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) |
| 42 |
38 7 41
|
syl2anc |
|- ( ph -> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) |
| 43 |
42 14
|
breqtrrdi |
|- ( ph -> A <_ R ) |
| 44 |
|
min2 |
|- ( ( ( G + ( C / 2 ) ) e. RR /\ B e. RR ) -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ B ) |
| 45 |
30 6 44
|
syl2anc |
|- ( ph -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ B ) |
| 46 |
14 45
|
eqbrtrid |
|- ( ph -> R <_ B ) |
| 47 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( R e. ( A [,] B ) <-> ( R e. RR /\ A <_ R /\ R <_ B ) ) ) |
| 48 |
5 6 47
|
syl2anc |
|- ( ph -> ( R e. ( A [,] B ) <-> ( R e. RR /\ A <_ R /\ R <_ B ) ) ) |
| 49 |
34 43 46 48
|
mpbir3and |
|- ( ph -> R e. ( A [,] B ) ) |
| 50 |
26 11
|
ltsubrpd |
|- ( ph -> ( G - C ) < G ) |
| 51 |
50 13
|
breqtrdi |
|- ( ph -> ( G - C ) < sup ( S , RR , < ) ) |
| 52 |
11
|
rpred |
|- ( ph -> C e. RR ) |
| 53 |
26 52
|
resubcld |
|- ( ph -> ( G - C ) e. RR ) |
| 54 |
|
suprlub |
|- ( ( ( S C_ RR /\ S =/= (/) /\ E. n e. RR A. y e. S y <_ n ) /\ ( G - C ) e. RR ) -> ( ( G - C ) < sup ( S , RR , < ) <-> E. v e. S ( G - C ) < v ) ) |
| 55 |
18 21 24 53 54
|
syl31anc |
|- ( ph -> ( ( G - C ) < sup ( S , RR , < ) <-> E. v e. S ( G - C ) < v ) ) |
| 56 |
51 55
|
mpbid |
|- ( ph -> E. v e. S ( G - C ) < v ) |
| 57 |
|
oveq2 |
|- ( x = v -> ( A [,] x ) = ( A [,] v ) ) |
| 58 |
57
|
sseq1d |
|- ( x = v -> ( ( A [,] x ) C_ U. z <-> ( A [,] v ) C_ U. z ) ) |
| 59 |
58
|
rexbidv |
|- ( x = v -> ( E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z <-> E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z ) ) |
| 60 |
59 4
|
elrab2 |
|- ( v e. S <-> ( v e. ( A [,] B ) /\ E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z ) ) |
| 61 |
|
unieq |
|- ( z = w -> U. z = U. w ) |
| 62 |
61
|
sseq2d |
|- ( z = w -> ( ( A [,] v ) C_ U. z <-> ( A [,] v ) C_ U. w ) ) |
| 63 |
62
|
cbvrexvw |
|- ( E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z <-> E. w e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. w ) |
| 64 |
|
simpr1 |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w e. ( ~P U i^i Fin ) ) |
| 65 |
|
elin |
|- ( w e. ( ~P U i^i Fin ) <-> ( w e. ~P U /\ w e. Fin ) ) |
| 66 |
64 65
|
sylib |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w e. ~P U /\ w e. Fin ) ) |
| 67 |
66
|
simpld |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w e. ~P U ) |
| 68 |
67
|
elpwid |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w C_ U ) |
| 69 |
|
simpll |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ph ) |
| 70 |
69 10
|
syl |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> V e. U ) |
| 71 |
70
|
snssd |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> { V } C_ U ) |
| 72 |
68 71
|
unssd |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) C_ U ) |
| 73 |
|
vex |
|- w e. _V |
| 74 |
|
snex |
|- { V } e. _V |
| 75 |
73 74
|
unex |
|- ( w u. { V } ) e. _V |
| 76 |
75
|
elpw |
|- ( ( w u. { V } ) e. ~P U <-> ( w u. { V } ) C_ U ) |
| 77 |
72 76
|
sylibr |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) e. ~P U ) |
| 78 |
66
|
simprd |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w e. Fin ) |
| 79 |
|
snfi |
|- { V } e. Fin |
| 80 |
|
unfi |
|- ( ( w e. Fin /\ { V } e. Fin ) -> ( w u. { V } ) e. Fin ) |
| 81 |
78 79 80
|
sylancl |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) e. Fin ) |
| 82 |
77 81
|
elind |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) e. ( ~P U i^i Fin ) ) |
| 83 |
|
simplr2 |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> ( A [,] v ) C_ U. w ) |
| 84 |
|
ssun1 |
|- U. w C_ ( U. w u. V ) |
| 85 |
83 84
|
sstrdi |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> ( A [,] v ) C_ ( U. w u. V ) ) |
| 86 |
69 5
|
syl |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> A e. RR ) |
| 87 |
69 34
|
syl |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> R e. RR ) |
| 88 |
|
elicc2 |
|- ( ( A e. RR /\ R e. RR ) -> ( t e. ( A [,] R ) <-> ( t e. RR /\ A <_ t /\ t <_ R ) ) ) |
| 89 |
86 87 88
|
syl2anc |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( t e. ( A [,] R ) <-> ( t e. RR /\ A <_ t /\ t <_ R ) ) ) |
| 90 |
89
|
biimpa |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( t e. RR /\ A <_ t /\ t <_ R ) ) |
| 91 |
90
|
simp1d |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> t e. RR ) |
| 92 |
91
|
adantrr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t e. RR ) |
| 93 |
90
|
simp2d |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> A <_ t ) |
| 94 |
93
|
adantrr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> A <_ t ) |
| 95 |
|
simprr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t <_ v ) |
| 96 |
69 17
|
syl |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( A [,] B ) C_ RR ) |
| 97 |
|
simplr |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> v e. ( A [,] B ) ) |
| 98 |
96 97
|
sseldd |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> v e. RR ) |
| 99 |
|
elicc2 |
|- ( ( A e. RR /\ v e. RR ) -> ( t e. ( A [,] v ) <-> ( t e. RR /\ A <_ t /\ t <_ v ) ) ) |
| 100 |
86 98 99
|
syl2anc |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( t e. ( A [,] v ) <-> ( t e. RR /\ A <_ t /\ t <_ v ) ) ) |
| 101 |
100
|
adantr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> ( t e. ( A [,] v ) <-> ( t e. RR /\ A <_ t /\ t <_ v ) ) ) |
| 102 |
92 94 95 101
|
mpbir3and |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t e. ( A [,] v ) ) |
| 103 |
85 102
|
sseldd |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t e. ( U. w u. V ) ) |
| 104 |
103
|
expr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( t <_ v -> t e. ( U. w u. V ) ) ) |
| 105 |
69
|
adantr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ph ) |
| 106 |
105 12
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G ( ball ` D ) C ) C_ V ) |
| 107 |
91
|
adantrr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. RR ) |
| 108 |
105 53
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G - C ) e. RR ) |
| 109 |
98
|
adantr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> v e. RR ) |
| 110 |
|
simplr3 |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G - C ) < v ) |
| 111 |
|
simprr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> v < t ) |
| 112 |
108 109 107 110 111
|
lttrd |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G - C ) < t ) |
| 113 |
105 34
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> R e. RR ) |
| 114 |
26 52
|
readdcld |
|- ( ph -> ( G + C ) e. RR ) |
| 115 |
105 114
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G + C ) e. RR ) |
| 116 |
90
|
simp3d |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> t <_ R ) |
| 117 |
116
|
adantrr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t <_ R ) |
| 118 |
|
min1 |
|- ( ( ( G + ( C / 2 ) ) e. RR /\ B e. RR ) -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ ( G + ( C / 2 ) ) ) |
| 119 |
30 6 118
|
syl2anc |
|- ( ph -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ ( G + ( C / 2 ) ) ) |
| 120 |
14 119
|
eqbrtrid |
|- ( ph -> R <_ ( G + ( C / 2 ) ) ) |
| 121 |
|
rphalflt |
|- ( C e. RR+ -> ( C / 2 ) < C ) |
| 122 |
11 121
|
syl |
|- ( ph -> ( C / 2 ) < C ) |
| 123 |
29 52 26 122
|
ltadd2dd |
|- ( ph -> ( G + ( C / 2 ) ) < ( G + C ) ) |
| 124 |
34 30 114 120 123
|
lelttrd |
|- ( ph -> R < ( G + C ) ) |
| 125 |
105 124
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> R < ( G + C ) ) |
| 126 |
107 113 115 117 125
|
lelttrd |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t < ( G + C ) ) |
| 127 |
|
rexr |
|- ( ( G - C ) e. RR -> ( G - C ) e. RR* ) |
| 128 |
|
rexr |
|- ( ( G + C ) e. RR -> ( G + C ) e. RR* ) |
| 129 |
|
elioo2 |
|- ( ( ( G - C ) e. RR* /\ ( G + C ) e. RR* ) -> ( t e. ( ( G - C ) (,) ( G + C ) ) <-> ( t e. RR /\ ( G - C ) < t /\ t < ( G + C ) ) ) ) |
| 130 |
127 128 129
|
syl2an |
|- ( ( ( G - C ) e. RR /\ ( G + C ) e. RR ) -> ( t e. ( ( G - C ) (,) ( G + C ) ) <-> ( t e. RR /\ ( G - C ) < t /\ t < ( G + C ) ) ) ) |
| 131 |
108 115 130
|
syl2anc |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( t e. ( ( G - C ) (,) ( G + C ) ) <-> ( t e. RR /\ ( G - C ) < t /\ t < ( G + C ) ) ) ) |
| 132 |
107 112 126 131
|
mpbir3and |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. ( ( G - C ) (,) ( G + C ) ) ) |
| 133 |
105 26
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> G e. RR ) |
| 134 |
105 11
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> C e. RR+ ) |
| 135 |
134
|
rpred |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> C e. RR ) |
| 136 |
3
|
bl2ioo |
|- ( ( G e. RR /\ C e. RR ) -> ( G ( ball ` D ) C ) = ( ( G - C ) (,) ( G + C ) ) ) |
| 137 |
133 135 136
|
syl2anc |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G ( ball ` D ) C ) = ( ( G - C ) (,) ( G + C ) ) ) |
| 138 |
132 137
|
eleqtrrd |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. ( G ( ball ` D ) C ) ) |
| 139 |
106 138
|
sseldd |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. V ) |
| 140 |
|
elun2 |
|- ( t e. V -> t e. ( U. w u. V ) ) |
| 141 |
139 140
|
syl |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. ( U. w u. V ) ) |
| 142 |
141
|
expr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( v < t -> t e. ( U. w u. V ) ) ) |
| 143 |
98
|
adantr |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> v e. RR ) |
| 144 |
|
lelttric |
|- ( ( t e. RR /\ v e. RR ) -> ( t <_ v \/ v < t ) ) |
| 145 |
91 143 144
|
syl2anc |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( t <_ v \/ v < t ) ) |
| 146 |
104 142 145
|
mpjaod |
|- ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> t e. ( U. w u. V ) ) |
| 147 |
146
|
ex |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( t e. ( A [,] R ) -> t e. ( U. w u. V ) ) ) |
| 148 |
147
|
ssrdv |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( A [,] R ) C_ ( U. w u. V ) ) |
| 149 |
|
uniun |
|- U. ( w u. { V } ) = ( U. w u. U. { V } ) |
| 150 |
|
unisng |
|- ( V e. U -> U. { V } = V ) |
| 151 |
70 150
|
syl |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> U. { V } = V ) |
| 152 |
151
|
uneq2d |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( U. w u. U. { V } ) = ( U. w u. V ) ) |
| 153 |
149 152
|
eqtrid |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> U. ( w u. { V } ) = ( U. w u. V ) ) |
| 154 |
148 153
|
sseqtrrd |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( A [,] R ) C_ U. ( w u. { V } ) ) |
| 155 |
|
unieq |
|- ( y = ( w u. { V } ) -> U. y = U. ( w u. { V } ) ) |
| 156 |
155
|
sseq2d |
|- ( y = ( w u. { V } ) -> ( ( A [,] R ) C_ U. y <-> ( A [,] R ) C_ U. ( w u. { V } ) ) ) |
| 157 |
156
|
rspcev |
|- ( ( ( w u. { V } ) e. ( ~P U i^i Fin ) /\ ( A [,] R ) C_ U. ( w u. { V } ) ) -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) |
| 158 |
82 154 157
|
syl2anc |
|- ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) |
| 159 |
158
|
3exp2 |
|- ( ( ph /\ v e. ( A [,] B ) ) -> ( w e. ( ~P U i^i Fin ) -> ( ( A [,] v ) C_ U. w -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) ) |
| 160 |
159
|
rexlimdv |
|- ( ( ph /\ v e. ( A [,] B ) ) -> ( E. w e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. w -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) |
| 161 |
63 160
|
biimtrid |
|- ( ( ph /\ v e. ( A [,] B ) ) -> ( E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) |
| 162 |
161
|
expimpd |
|- ( ph -> ( ( v e. ( A [,] B ) /\ E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z ) -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) |
| 163 |
60 162
|
biimtrid |
|- ( ph -> ( v e. S -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) |
| 164 |
163
|
rexlimdv |
|- ( ph -> ( E. v e. S ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) |
| 165 |
56 164
|
mpd |
|- ( ph -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) |
| 166 |
|
oveq2 |
|- ( v = R -> ( A [,] v ) = ( A [,] R ) ) |
| 167 |
166
|
sseq1d |
|- ( v = R -> ( ( A [,] v ) C_ U. y <-> ( A [,] R ) C_ U. y ) ) |
| 168 |
167
|
rexbidv |
|- ( v = R -> ( E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y <-> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) |
| 169 |
|
unieq |
|- ( z = y -> U. z = U. y ) |
| 170 |
169
|
sseq2d |
|- ( z = y -> ( ( A [,] v ) C_ U. z <-> ( A [,] v ) C_ U. y ) ) |
| 171 |
170
|
cbvrexvw |
|- ( E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z <-> E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y ) |
| 172 |
59 171
|
bitrdi |
|- ( x = v -> ( E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z <-> E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y ) ) |
| 173 |
172
|
cbvrabv |
|- { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } = { v e. ( A [,] B ) | E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y } |
| 174 |
4 173
|
eqtri |
|- S = { v e. ( A [,] B ) | E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y } |
| 175 |
168 174
|
elrab2 |
|- ( R e. S <-> ( R e. ( A [,] B ) /\ E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) |
| 176 |
49 165 175
|
sylanbrc |
|- ( ph -> R e. S ) |
| 177 |
18 21 24 176
|
suprubd |
|- ( ph -> R <_ sup ( S , RR , < ) ) |
| 178 |
177 13
|
breqtrrdi |
|- ( ph -> R <_ G ) |
| 179 |
|
iftrue |
|- ( ( G + ( C / 2 ) ) <_ B -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) = ( G + ( C / 2 ) ) ) |
| 180 |
14 179
|
eqtrid |
|- ( ( G + ( C / 2 ) ) <_ B -> R = ( G + ( C / 2 ) ) ) |
| 181 |
180
|
breq1d |
|- ( ( G + ( C / 2 ) ) <_ B -> ( R <_ G <-> ( G + ( C / 2 ) ) <_ G ) ) |
| 182 |
178 181
|
syl5ibcom |
|- ( ph -> ( ( G + ( C / 2 ) ) <_ B -> ( G + ( C / 2 ) ) <_ G ) ) |
| 183 |
32 182
|
mtod |
|- ( ph -> -. ( G + ( C / 2 ) ) <_ B ) |
| 184 |
|
iffalse |
|- ( -. ( G + ( C / 2 ) ) <_ B -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) = B ) |
| 185 |
14 184
|
eqtrid |
|- ( -. ( G + ( C / 2 ) ) <_ B -> R = B ) |
| 186 |
183 185
|
syl |
|- ( ph -> R = B ) |
| 187 |
186 176
|
eqeltrrd |
|- ( ph -> B e. S ) |