Step |
Hyp |
Ref |
Expression |
1 |
|
icccmp.1 |
|- J = ( topGen ` ran (,) ) |
2 |
|
icccmp.2 |
|- T = ( J |`t ( A [,] B ) ) |
3 |
|
icccmp.3 |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
4 |
|
icccmp.4 |
|- S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } |
5 |
|
icccmp.5 |
|- ( ph -> A e. RR ) |
6 |
|
icccmp.6 |
|- ( ph -> B e. RR ) |
7 |
|
icccmp.7 |
|- ( ph -> A <_ B ) |
8 |
|
icccmp.8 |
|- ( ph -> U C_ J ) |
9 |
|
icccmp.9 |
|- ( ph -> ( A [,] B ) C_ U. U ) |
10 |
4
|
ssrab3 |
|- S C_ ( A [,] B ) |
11 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
12 |
5 6 11
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
13 |
10 12
|
sstrid |
|- ( ph -> S C_ RR ) |
14 |
1 2 3 4 5 6 7 8 9
|
icccmplem1 |
|- ( ph -> ( A e. S /\ A. y e. S y <_ B ) ) |
15 |
14
|
simpld |
|- ( ph -> A e. S ) |
16 |
15
|
ne0d |
|- ( ph -> S =/= (/) ) |
17 |
14
|
simprd |
|- ( ph -> A. y e. S y <_ B ) |
18 |
|
brralrspcev |
|- ( ( B e. RR /\ A. y e. S y <_ B ) -> E. v e. RR A. y e. S y <_ v ) |
19 |
6 17 18
|
syl2anc |
|- ( ph -> E. v e. RR A. y e. S y <_ v ) |
20 |
13 16 19
|
suprcld |
|- ( ph -> sup ( S , RR , < ) e. RR ) |
21 |
13 16 19 15
|
suprubd |
|- ( ph -> A <_ sup ( S , RR , < ) ) |
22 |
|
suprleub |
|- ( ( ( S C_ RR /\ S =/= (/) /\ E. v e. RR A. y e. S y <_ v ) /\ B e. RR ) -> ( sup ( S , RR , < ) <_ B <-> A. y e. S y <_ B ) ) |
23 |
13 16 19 6 22
|
syl31anc |
|- ( ph -> ( sup ( S , RR , < ) <_ B <-> A. y e. S y <_ B ) ) |
24 |
17 23
|
mpbird |
|- ( ph -> sup ( S , RR , < ) <_ B ) |
25 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( sup ( S , RR , < ) e. ( A [,] B ) <-> ( sup ( S , RR , < ) e. RR /\ A <_ sup ( S , RR , < ) /\ sup ( S , RR , < ) <_ B ) ) ) |
26 |
5 6 25
|
syl2anc |
|- ( ph -> ( sup ( S , RR , < ) e. ( A [,] B ) <-> ( sup ( S , RR , < ) e. RR /\ A <_ sup ( S , RR , < ) /\ sup ( S , RR , < ) <_ B ) ) ) |
27 |
20 21 24 26
|
mpbir3and |
|- ( ph -> sup ( S , RR , < ) e. ( A [,] B ) ) |
28 |
9 27
|
sseldd |
|- ( ph -> sup ( S , RR , < ) e. U. U ) |
29 |
|
eluni2 |
|- ( sup ( S , RR , < ) e. U. U <-> E. u e. U sup ( S , RR , < ) e. u ) |
30 |
28 29
|
sylib |
|- ( ph -> E. u e. U sup ( S , RR , < ) e. u ) |
31 |
8
|
sselda |
|- ( ( ph /\ u e. U ) -> u e. J ) |
32 |
3
|
rexmet |
|- D e. ( *Met ` RR ) |
33 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
34 |
3 33
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` D ) |
35 |
1 34
|
eqtri |
|- J = ( MetOpen ` D ) |
36 |
35
|
mopni2 |
|- ( ( D e. ( *Met ` RR ) /\ u e. J /\ sup ( S , RR , < ) e. u ) -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) |
37 |
32 36
|
mp3an1 |
|- ( ( u e. J /\ sup ( S , RR , < ) e. u ) -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) |
38 |
37
|
ex |
|- ( u e. J -> ( sup ( S , RR , < ) e. u -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) |
39 |
31 38
|
syl |
|- ( ( ph /\ u e. U ) -> ( sup ( S , RR , < ) e. u -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) |
40 |
5
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> A e. RR ) |
41 |
6
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> B e. RR ) |
42 |
7
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> A <_ B ) |
43 |
8
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> U C_ J ) |
44 |
9
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> ( A [,] B ) C_ U. U ) |
45 |
|
simplr |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> u e. U ) |
46 |
|
simprl |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> w e. RR+ ) |
47 |
|
simprr |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) |
48 |
|
eqid |
|- sup ( S , RR , < ) = sup ( S , RR , < ) |
49 |
|
eqid |
|- if ( ( sup ( S , RR , < ) + ( w / 2 ) ) <_ B , ( sup ( S , RR , < ) + ( w / 2 ) ) , B ) = if ( ( sup ( S , RR , < ) + ( w / 2 ) ) <_ B , ( sup ( S , RR , < ) + ( w / 2 ) ) , B ) |
50 |
1 2 3 4 40 41 42 43 44 45 46 47 48 49
|
icccmplem2 |
|- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> B e. S ) |
51 |
50
|
rexlimdvaa |
|- ( ( ph /\ u e. U ) -> ( E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u -> B e. S ) ) |
52 |
39 51
|
syld |
|- ( ( ph /\ u e. U ) -> ( sup ( S , RR , < ) e. u -> B e. S ) ) |
53 |
52
|
rexlimdva |
|- ( ph -> ( E. u e. U sup ( S , RR , < ) e. u -> B e. S ) ) |
54 |
30 53
|
mpd |
|- ( ph -> B e. S ) |