| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icccntr.1 |  |-  ( A / R ) = C | 
						
							| 2 |  | icccntr.2 |  |-  ( B / R ) = D | 
						
							| 3 |  | simpl |  |-  ( ( X e. RR /\ R e. RR+ ) -> X e. RR ) | 
						
							| 4 |  | rerpdivcl |  |-  ( ( X e. RR /\ R e. RR+ ) -> ( X / R ) e. RR ) | 
						
							| 5 | 3 4 | 2thd |  |-  ( ( X e. RR /\ R e. RR+ ) -> ( X e. RR <-> ( X / R ) e. RR ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. RR <-> ( X / R ) e. RR ) ) | 
						
							| 7 |  | elrp |  |-  ( R e. RR+ <-> ( R e. RR /\ 0 < R ) ) | 
						
							| 8 |  | lediv1 |  |-  ( ( A e. RR /\ X e. RR /\ ( R e. RR /\ 0 < R ) ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) | 
						
							| 9 | 7 8 | syl3an3b |  |-  ( ( A e. RR /\ X e. RR /\ R e. RR+ ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) | 
						
							| 10 | 9 | 3expb |  |-  ( ( A e. RR /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) | 
						
							| 11 | 10 | adantlr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) | 
						
							| 12 | 1 | breq1i |  |-  ( ( A / R ) <_ ( X / R ) <-> C <_ ( X / R ) ) | 
						
							| 13 | 11 12 | bitrdi |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> C <_ ( X / R ) ) ) | 
						
							| 14 |  | lediv1 |  |-  ( ( X e. RR /\ B e. RR /\ ( R e. RR /\ 0 < R ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) | 
						
							| 15 | 7 14 | syl3an3b |  |-  ( ( X e. RR /\ B e. RR /\ R e. RR+ ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) | 
						
							| 16 | 15 | 3expb |  |-  ( ( X e. RR /\ ( B e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) | 
						
							| 17 | 16 | an12s |  |-  ( ( B e. RR /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) | 
						
							| 18 | 17 | adantll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) | 
						
							| 19 | 2 | breq2i |  |-  ( ( X / R ) <_ ( B / R ) <-> ( X / R ) <_ D ) | 
						
							| 20 | 18 19 | bitrdi |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ D ) ) | 
						
							| 21 | 6 13 20 | 3anbi123d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( ( X e. RR /\ A <_ X /\ X <_ B ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) | 
						
							| 22 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) | 
						
							| 24 |  | rerpdivcl |  |-  ( ( A e. RR /\ R e. RR+ ) -> ( A / R ) e. RR ) | 
						
							| 25 | 1 24 | eqeltrrid |  |-  ( ( A e. RR /\ R e. RR+ ) -> C e. RR ) | 
						
							| 26 |  | rerpdivcl |  |-  ( ( B e. RR /\ R e. RR+ ) -> ( B / R ) e. RR ) | 
						
							| 27 | 2 26 | eqeltrrid |  |-  ( ( B e. RR /\ R e. RR+ ) -> D e. RR ) | 
						
							| 28 |  | elicc2 |  |-  ( ( C e. RR /\ D e. RR ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) | 
						
							| 29 | 25 27 28 | syl2an |  |-  ( ( ( A e. RR /\ R e. RR+ ) /\ ( B e. RR /\ R e. RR+ ) ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) | 
						
							| 30 | 29 | anandirs |  |-  ( ( ( A e. RR /\ B e. RR ) /\ R e. RR+ ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) | 
						
							| 31 | 30 | adantrl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) | 
						
							| 32 | 21 23 31 | 3bitr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) |