| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icccntri.1 |  |-  A e. RR | 
						
							| 2 |  | icccntri.2 |  |-  B e. RR | 
						
							| 3 |  | icccntri.3 |  |-  R e. RR+ | 
						
							| 4 |  | icccntri.4 |  |-  ( A / R ) = C | 
						
							| 5 |  | icccntri.5 |  |-  ( B / R ) = D | 
						
							| 6 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 7 | 1 2 6 | mp2an |  |-  ( A [,] B ) C_ RR | 
						
							| 8 | 7 | sseli |  |-  ( X e. ( A [,] B ) -> X e. RR ) | 
						
							| 9 | 4 5 | icccntr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) | 
						
							| 10 | 1 2 9 | mpanl12 |  |-  ( ( X e. RR /\ R e. RR+ ) -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) | 
						
							| 11 | 3 10 | mpan2 |  |-  ( X e. RR -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) | 
						
							| 12 | 11 | biimpd |  |-  ( X e. RR -> ( X e. ( A [,] B ) -> ( X / R ) e. ( C [,] D ) ) ) | 
						
							| 13 | 8 12 | mpcom |  |-  ( X e. ( A [,] B ) -> ( X / R ) e. ( C [,] D ) ) |