| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccss2 |  |-  ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x [,] y ) C_ ( A [,] B ) ) | 
						
							| 2 | 1 | rgen2 |  |-  A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) | 
						
							| 3 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 4 |  | reconn |  |-  ( ( A [,] B ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) ) ) | 
						
							| 6 | 2 5 | mpbiri |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |