Step |
Hyp |
Ref |
Expression |
1 |
|
iccss2 |
|- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x [,] y ) C_ ( A [,] B ) ) |
2 |
1
|
rgen2 |
|- A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) |
3 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
4 |
|
reconn |
|- ( ( A [,] B ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) ) ) |
5 |
3 4
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) ) ) |
6 |
2 5
|
mpbiri |
|- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |