Step |
Hyp |
Ref |
Expression |
1 |
|
iccss2 |
|- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
2 |
1
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
3 |
2
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
4 |
3
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C < D ) -> ( C [,] D ) C_ ( A [,] B ) ) |
5 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
6 |
5
|
sselda |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A [,] B ) ) -> C e. RR ) |
7 |
6
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> C e. RR ) |
8 |
5
|
sselda |
|- ( ( ( A e. RR /\ B e. RR ) /\ D e. ( A [,] B ) ) -> D e. RR ) |
9 |
8
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> D e. RR ) |
10 |
7 9
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( C e. RR /\ D e. RR ) ) |
11 |
10
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( C e. RR /\ D e. RR ) ) |
12 |
|
simpr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> T e. ( 0 [,] 1 ) ) |
13 |
11 12
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( C e. RR /\ D e. RR ) /\ T e. ( 0 [,] 1 ) ) ) |
14 |
|
lincmb01cmp |
|- ( ( ( C e. RR /\ D e. RR /\ C < D ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
15 |
14
|
ex |
|- ( ( C e. RR /\ D e. RR /\ C < D ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) ) |
16 |
15
|
3expa |
|- ( ( ( C e. RR /\ D e. RR ) /\ C < D ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) ) |
17 |
16
|
imp |
|- ( ( ( ( C e. RR /\ D e. RR ) /\ C < D ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
18 |
17
|
an32s |
|- ( ( ( ( C e. RR /\ D e. RR ) /\ T e. ( 0 [,] 1 ) ) /\ C < D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
19 |
13 18
|
sylan |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C < D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
20 |
4 19
|
sseldd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C < D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
21 |
|
oveq2 |
|- ( C = D -> ( ( 1 - T ) x. C ) = ( ( 1 - T ) x. D ) ) |
22 |
21
|
oveq1d |
|- ( C = D -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
23 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
24 |
23
|
sseli |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
25 |
24
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> T e. CC ) |
26 |
25
|
ad2antll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> T e. CC ) |
27 |
8
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ D e. ( A [,] B ) ) -> D e. CC ) |
28 |
27
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> D e. CC ) |
29 |
|
ax-1cn |
|- 1 e. CC |
30 |
|
npcan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( ( 1 - T ) + T ) = 1 ) |
31 |
29 30
|
mpan |
|- ( T e. CC -> ( ( 1 - T ) + T ) = 1 ) |
32 |
31
|
adantr |
|- ( ( T e. CC /\ D e. CC ) -> ( ( 1 - T ) + T ) = 1 ) |
33 |
32
|
oveq1d |
|- ( ( T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( 1 x. D ) ) |
34 |
|
subcl |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
35 |
29 34
|
mpan |
|- ( T e. CC -> ( 1 - T ) e. CC ) |
36 |
35
|
ancri |
|- ( T e. CC -> ( ( 1 - T ) e. CC /\ T e. CC ) ) |
37 |
|
adddir |
|- ( ( ( 1 - T ) e. CC /\ T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
38 |
37
|
3expa |
|- ( ( ( ( 1 - T ) e. CC /\ T e. CC ) /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
39 |
36 38
|
sylan |
|- ( ( T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
40 |
|
mulid2 |
|- ( D e. CC -> ( 1 x. D ) = D ) |
41 |
40
|
adantl |
|- ( ( T e. CC /\ D e. CC ) -> ( 1 x. D ) = D ) |
42 |
33 39 41
|
3eqtr3d |
|- ( ( T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) x. D ) + ( T x. D ) ) = D ) |
43 |
26 28 42
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - T ) x. D ) + ( T x. D ) ) = D ) |
44 |
43
|
3adantr1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - T ) x. D ) + ( T x. D ) ) = D ) |
45 |
22 44
|
sylan9eqr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C = D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = D ) |
46 |
|
simplr2 |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C = D ) -> D e. ( A [,] B ) ) |
47 |
45 46
|
eqeltrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C = D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
48 |
|
iccss2 |
|- ( ( D e. ( A [,] B ) /\ C e. ( A [,] B ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
49 |
48
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ C e. ( A [,] B ) ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
50 |
49
|
ancom2s |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
51 |
50
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
52 |
51
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ D < C ) -> ( D [,] C ) C_ ( A [,] B ) ) |
53 |
9 7
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( D e. RR /\ C e. RR ) ) |
54 |
53
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( D e. RR /\ C e. RR ) ) |
55 |
54 12
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) ) |
56 |
|
iirev |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
57 |
23 56
|
sselid |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. RR ) |
58 |
57
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. CC ) |
59 |
|
recn |
|- ( C e. RR -> C e. CC ) |
60 |
|
mulcl |
|- ( ( ( 1 - T ) e. CC /\ C e. CC ) -> ( ( 1 - T ) x. C ) e. CC ) |
61 |
58 59 60
|
syl2anr |
|- ( ( C e. RR /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. C ) e. CC ) |
62 |
61
|
adantll |
|- ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. C ) e. CC ) |
63 |
|
recn |
|- ( D e. RR -> D e. CC ) |
64 |
|
mulcl |
|- ( ( T e. CC /\ D e. CC ) -> ( T x. D ) e. CC ) |
65 |
25 63 64
|
syl2anr |
|- ( ( D e. RR /\ T e. ( 0 [,] 1 ) ) -> ( T x. D ) e. CC ) |
66 |
65
|
adantlr |
|- ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. D ) e. CC ) |
67 |
62 66
|
addcomd |
|- ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( T x. D ) + ( ( 1 - T ) x. C ) ) ) |
68 |
67
|
3adantl3 |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( T x. D ) + ( ( 1 - T ) x. C ) ) ) |
69 |
|
nncan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
70 |
29 69
|
mpan |
|- ( T e. CC -> ( 1 - ( 1 - T ) ) = T ) |
71 |
70
|
eqcomd |
|- ( T e. CC -> T = ( 1 - ( 1 - T ) ) ) |
72 |
71
|
oveq1d |
|- ( T e. CC -> ( T x. D ) = ( ( 1 - ( 1 - T ) ) x. D ) ) |
73 |
72
|
oveq1d |
|- ( T e. CC -> ( ( T x. D ) + ( ( 1 - T ) x. C ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
74 |
25 73
|
syl |
|- ( T e. ( 0 [,] 1 ) -> ( ( T x. D ) + ( ( 1 - T ) x. C ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
75 |
74
|
adantl |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. D ) + ( ( 1 - T ) x. C ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
76 |
68 75
|
eqtrd |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
77 |
|
lincmb01cmp |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) e. ( D [,] C ) ) |
78 |
56 77
|
sylan2 |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) e. ( D [,] C ) ) |
79 |
76 78
|
eqeltrd |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
80 |
79
|
ex |
|- ( ( D e. RR /\ C e. RR /\ D < C ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) ) |
81 |
80
|
3expa |
|- ( ( ( D e. RR /\ C e. RR ) /\ D < C ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) ) |
82 |
81
|
imp |
|- ( ( ( ( D e. RR /\ C e. RR ) /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
83 |
82
|
an32s |
|- ( ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) /\ D < C ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
84 |
55 83
|
sylan |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ D < C ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
85 |
52 84
|
sseldd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ D < C ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
86 |
7 9
|
lttri4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( C < D \/ C = D \/ D < C ) ) |
87 |
86
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( C < D \/ C = D \/ D < C ) ) |
88 |
20 47 85 87
|
mpjao3dan |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
89 |
88
|
ex |
|- ( ( A e. RR /\ B e. RR ) -> ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) ) |