| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( x = 1 -> ( RePart ` x ) = ( RePart ` 1 ) ) |
| 2 |
|
fveq2 |
|- ( x = 1 -> ( p ` x ) = ( p ` 1 ) ) |
| 3 |
2
|
oveq2d |
|- ( x = 1 -> ( ( p ` 0 ) [,) ( p ` x ) ) = ( ( p ` 0 ) [,) ( p ` 1 ) ) ) |
| 4 |
3
|
eleq2d |
|- ( x = 1 -> ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) <-> X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) ) ) |
| 5 |
|
oveq2 |
|- ( x = 1 -> ( 0 ..^ x ) = ( 0 ..^ 1 ) ) |
| 6 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
| 7 |
5 6
|
eqtrdi |
|- ( x = 1 -> ( 0 ..^ x ) = { 0 } ) |
| 8 |
7
|
rexeqdv |
|- ( x = 1 -> ( E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> E. i e. { 0 } X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 9 |
4 8
|
imbi12d |
|- ( x = 1 -> ( ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) -> E. i e. { 0 } X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 10 |
1 9
|
raleqbidv |
|- ( x = 1 -> ( A. p e. ( RePart ` x ) ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> A. p e. ( RePart ` 1 ) ( X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) -> E. i e. { 0 } X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 11 |
|
fveq2 |
|- ( x = y -> ( RePart ` x ) = ( RePart ` y ) ) |
| 12 |
|
fveq2 |
|- ( x = y -> ( p ` x ) = ( p ` y ) ) |
| 13 |
12
|
oveq2d |
|- ( x = y -> ( ( p ` 0 ) [,) ( p ` x ) ) = ( ( p ` 0 ) [,) ( p ` y ) ) ) |
| 14 |
13
|
eleq2d |
|- ( x = y -> ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) <-> X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) ) |
| 15 |
|
oveq2 |
|- ( x = y -> ( 0 ..^ x ) = ( 0 ..^ y ) ) |
| 16 |
15
|
rexeqdv |
|- ( x = y -> ( E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 17 |
14 16
|
imbi12d |
|- ( x = y -> ( ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 18 |
11 17
|
raleqbidv |
|- ( x = y -> ( A. p e. ( RePart ` x ) ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 19 |
|
fveq2 |
|- ( x = ( y + 1 ) -> ( RePart ` x ) = ( RePart ` ( y + 1 ) ) ) |
| 20 |
|
fveq2 |
|- ( x = ( y + 1 ) -> ( p ` x ) = ( p ` ( y + 1 ) ) ) |
| 21 |
20
|
oveq2d |
|- ( x = ( y + 1 ) -> ( ( p ` 0 ) [,) ( p ` x ) ) = ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) |
| 22 |
21
|
eleq2d |
|- ( x = ( y + 1 ) -> ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) <-> X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) |
| 23 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( 0 ..^ x ) = ( 0 ..^ ( y + 1 ) ) ) |
| 24 |
23
|
rexeqdv |
|- ( x = ( y + 1 ) -> ( E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 25 |
22 24
|
imbi12d |
|- ( x = ( y + 1 ) -> ( ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 26 |
19 25
|
raleqbidv |
|- ( x = ( y + 1 ) -> ( A. p e. ( RePart ` x ) ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> A. p e. ( RePart ` ( y + 1 ) ) ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 27 |
|
fveq2 |
|- ( x = M -> ( RePart ` x ) = ( RePart ` M ) ) |
| 28 |
|
fveq2 |
|- ( x = M -> ( p ` x ) = ( p ` M ) ) |
| 29 |
28
|
oveq2d |
|- ( x = M -> ( ( p ` 0 ) [,) ( p ` x ) ) = ( ( p ` 0 ) [,) ( p ` M ) ) ) |
| 30 |
29
|
eleq2d |
|- ( x = M -> ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) <-> X e. ( ( p ` 0 ) [,) ( p ` M ) ) ) ) |
| 31 |
|
oveq2 |
|- ( x = M -> ( 0 ..^ x ) = ( 0 ..^ M ) ) |
| 32 |
31
|
rexeqdv |
|- ( x = M -> ( E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> E. i e. ( 0 ..^ M ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 33 |
30 32
|
imbi12d |
|- ( x = M -> ( ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( X e. ( ( p ` 0 ) [,) ( p ` M ) ) -> E. i e. ( 0 ..^ M ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 34 |
27 33
|
raleqbidv |
|- ( x = M -> ( A. p e. ( RePart ` x ) ( X e. ( ( p ` 0 ) [,) ( p ` x ) ) -> E. i e. ( 0 ..^ x ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> A. p e. ( RePart ` M ) ( X e. ( ( p ` 0 ) [,) ( p ` M ) ) -> E. i e. ( 0 ..^ M ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 35 |
|
0nn0 |
|- 0 e. NN0 |
| 36 |
|
fveq2 |
|- ( i = 0 -> ( p ` i ) = ( p ` 0 ) ) |
| 37 |
|
fv0p1e1 |
|- ( i = 0 -> ( p ` ( i + 1 ) ) = ( p ` 1 ) ) |
| 38 |
36 37
|
oveq12d |
|- ( i = 0 -> ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) = ( ( p ` 0 ) [,) ( p ` 1 ) ) ) |
| 39 |
38
|
eleq2d |
|- ( i = 0 -> ( X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) ) ) |
| 40 |
39
|
rexsng |
|- ( 0 e. NN0 -> ( E. i e. { 0 } X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) ) ) |
| 41 |
35 40
|
ax-mp |
|- ( E. i e. { 0 } X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) ) |
| 42 |
41
|
biimpri |
|- ( X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) -> E. i e. { 0 } X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) |
| 43 |
42
|
rgenw |
|- A. p e. ( RePart ` 1 ) ( X e. ( ( p ` 0 ) [,) ( p ` 1 ) ) -> E. i e. { 0 } X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) |
| 44 |
|
nfv |
|- F/ p y e. NN |
| 45 |
|
nfra1 |
|- F/ p A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) |
| 46 |
44 45
|
nfan |
|- F/ p ( y e. NN /\ A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 47 |
|
nnnn0 |
|- ( y e. NN -> y e. NN0 ) |
| 48 |
|
fzonn0p1 |
|- ( y e. NN0 -> y e. ( 0 ..^ ( y + 1 ) ) ) |
| 49 |
47 48
|
syl |
|- ( y e. NN -> y e. ( 0 ..^ ( y + 1 ) ) ) |
| 50 |
49
|
ad2antrr |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ ( p e. ( RePart ` ( y + 1 ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) -> y e. ( 0 ..^ ( y + 1 ) ) ) |
| 51 |
|
fveq2 |
|- ( i = y -> ( p ` i ) = ( p ` y ) ) |
| 52 |
|
fvoveq1 |
|- ( i = y -> ( p ` ( i + 1 ) ) = ( p ` ( y + 1 ) ) ) |
| 53 |
51 52
|
oveq12d |
|- ( i = y -> ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) = ( ( p ` y ) [,) ( p ` ( y + 1 ) ) ) ) |
| 54 |
53
|
eleq2d |
|- ( i = y -> ( X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. ( ( p ` y ) [,) ( p ` ( y + 1 ) ) ) ) ) |
| 55 |
54
|
adantl |
|- ( ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ ( p e. ( RePart ` ( y + 1 ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) /\ i = y ) -> ( X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. ( ( p ` y ) [,) ( p ` ( y + 1 ) ) ) ) ) |
| 56 |
|
peano2nn |
|- ( y e. NN -> ( y + 1 ) e. NN ) |
| 57 |
56
|
adantr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( y + 1 ) e. NN ) |
| 58 |
|
simpr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> p e. ( RePart ` ( y + 1 ) ) ) |
| 59 |
56
|
nnnn0d |
|- ( y e. NN -> ( y + 1 ) e. NN0 ) |
| 60 |
|
0elfz |
|- ( ( y + 1 ) e. NN0 -> 0 e. ( 0 ... ( y + 1 ) ) ) |
| 61 |
59 60
|
syl |
|- ( y e. NN -> 0 e. ( 0 ... ( y + 1 ) ) ) |
| 62 |
61
|
adantr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> 0 e. ( 0 ... ( y + 1 ) ) ) |
| 63 |
57 58 62
|
iccpartxr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( p ` 0 ) e. RR* ) |
| 64 |
|
nn0fz0 |
|- ( ( y + 1 ) e. NN0 <-> ( y + 1 ) e. ( 0 ... ( y + 1 ) ) ) |
| 65 |
59 64
|
sylib |
|- ( y e. NN -> ( y + 1 ) e. ( 0 ... ( y + 1 ) ) ) |
| 66 |
65
|
adantr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( y + 1 ) e. ( 0 ... ( y + 1 ) ) ) |
| 67 |
57 58 66
|
iccpartxr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( p ` ( y + 1 ) ) e. RR* ) |
| 68 |
63 67
|
jca |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( p ` 0 ) e. RR* /\ ( p ` ( y + 1 ) ) e. RR* ) ) |
| 69 |
68
|
adantlr |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( p ` 0 ) e. RR* /\ ( p ` ( y + 1 ) ) e. RR* ) ) |
| 70 |
|
elico1 |
|- ( ( ( p ` 0 ) e. RR* /\ ( p ` ( y + 1 ) ) e. RR* ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) <-> ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 71 |
69 70
|
syl |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) <-> ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 72 |
|
simp1 |
|- ( ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) -> X e. RR* ) |
| 73 |
72
|
adantl |
|- ( ( ( p ` y ) <_ X /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> X e. RR* ) |
| 74 |
|
simpl |
|- ( ( ( p ` y ) <_ X /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> ( p ` y ) <_ X ) |
| 75 |
|
simpr3 |
|- ( ( ( p ` y ) <_ X /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> X < ( p ` ( y + 1 ) ) ) |
| 76 |
73 74 75
|
3jca |
|- ( ( ( p ` y ) <_ X /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) |
| 77 |
76
|
ex |
|- ( ( p ` y ) <_ X -> ( ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) -> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 78 |
77
|
adantl |
|- ( ( y e. NN /\ ( p ` y ) <_ X ) -> ( ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) -> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 79 |
78
|
adantr |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) -> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 80 |
71 79
|
sylbid |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 81 |
80
|
impr |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ ( p e. ( RePart ` ( y + 1 ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) -> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) |
| 82 |
|
nn0fz0 |
|- ( y e. NN0 <-> y e. ( 0 ... y ) ) |
| 83 |
47 82
|
sylib |
|- ( y e. NN -> y e. ( 0 ... y ) ) |
| 84 |
|
fzelp1 |
|- ( y e. ( 0 ... y ) -> y e. ( 0 ... ( y + 1 ) ) ) |
| 85 |
83 84
|
syl |
|- ( y e. NN -> y e. ( 0 ... ( y + 1 ) ) ) |
| 86 |
85
|
adantr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> y e. ( 0 ... ( y + 1 ) ) ) |
| 87 |
57 58 86
|
iccpartxr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( p ` y ) e. RR* ) |
| 88 |
87 67
|
jca |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( p ` y ) e. RR* /\ ( p ` ( y + 1 ) ) e. RR* ) ) |
| 89 |
88
|
ad2ant2r |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ ( p e. ( RePart ` ( y + 1 ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) -> ( ( p ` y ) e. RR* /\ ( p ` ( y + 1 ) ) e. RR* ) ) |
| 90 |
|
elico1 |
|- ( ( ( p ` y ) e. RR* /\ ( p ` ( y + 1 ) ) e. RR* ) -> ( X e. ( ( p ` y ) [,) ( p ` ( y + 1 ) ) ) <-> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 91 |
89 90
|
syl |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ ( p e. ( RePart ` ( y + 1 ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) -> ( X e. ( ( p ` y ) [,) ( p ` ( y + 1 ) ) ) <-> ( X e. RR* /\ ( p ` y ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 92 |
81 91
|
mpbird |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ ( p e. ( RePart ` ( y + 1 ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) -> X e. ( ( p ` y ) [,) ( p ` ( y + 1 ) ) ) ) |
| 93 |
50 55 92
|
rspcedvd |
|- ( ( ( y e. NN /\ ( p ` y ) <_ X ) /\ ( p e. ( RePart ` ( y + 1 ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) |
| 94 |
93
|
exp43 |
|- ( y e. NN -> ( ( p ` y ) <_ X -> ( p e. ( RePart ` ( y + 1 ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 95 |
94
|
adantr |
|- ( ( y e. NN /\ A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) -> ( ( p ` y ) <_ X -> ( p e. ( RePart ` ( y + 1 ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 96 |
|
iccpartres |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( p |` ( 0 ... y ) ) e. ( RePart ` y ) ) |
| 97 |
|
rspsbca |
|- ( ( ( p |` ( 0 ... y ) ) e. ( RePart ` y ) /\ A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) -> [. ( p |` ( 0 ... y ) ) / p ]. ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 98 |
|
vex |
|- p e. _V |
| 99 |
98
|
resex |
|- ( p |` ( 0 ... y ) ) e. _V |
| 100 |
|
sbcimg |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [. ( p |` ( 0 ... y ) ) / p ]. ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> [. ( p |` ( 0 ... y ) ) / p ]. E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 101 |
|
sbcel2 |
|- ( [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` 0 ) [,) ( p ` y ) ) <-> X e. [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` 0 ) [,) ( p ` y ) ) ) |
| 102 |
|
csbov12g |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` 0 ) [,) ( p ` y ) ) = ( [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` 0 ) [,) [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` y ) ) ) |
| 103 |
|
csbfv12 |
|- [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` 0 ) = ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ 0 ) |
| 104 |
|
csbvarg |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ p = ( p |` ( 0 ... y ) ) ) |
| 105 |
|
csbconstg |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ 0 = 0 ) |
| 106 |
104 105
|
fveq12d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ 0 ) = ( ( p |` ( 0 ... y ) ) ` 0 ) ) |
| 107 |
103 106
|
eqtrid |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` 0 ) = ( ( p |` ( 0 ... y ) ) ` 0 ) ) |
| 108 |
|
csbfv12 |
|- [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` y ) = ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ y ) |
| 109 |
|
csbconstg |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ y = y ) |
| 110 |
104 109
|
fveq12d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ y ) = ( ( p |` ( 0 ... y ) ) ` y ) ) |
| 111 |
108 110
|
eqtrid |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` y ) = ( ( p |` ( 0 ... y ) ) ` y ) ) |
| 112 |
107 111
|
oveq12d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` 0 ) [,) [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` y ) ) = ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) ) |
| 113 |
102 112
|
eqtrd |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` 0 ) [,) ( p ` y ) ) = ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) ) |
| 114 |
113
|
eleq2d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( X e. [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` 0 ) [,) ( p ` y ) ) <-> X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) ) ) |
| 115 |
101 114
|
bitrid |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` 0 ) [,) ( p ` y ) ) <-> X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) ) ) |
| 116 |
|
sbcrex |
|- ( [. ( p |` ( 0 ... y ) ) / p ]. E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> E. i e. ( 0 ..^ y ) [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) |
| 117 |
|
sbcel2 |
|- ( [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) |
| 118 |
|
csbov12g |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) = ( [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` i ) [,) [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` ( i + 1 ) ) ) ) |
| 119 |
|
csbfv12 |
|- [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` i ) = ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ i ) |
| 120 |
|
csbconstg |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ i = i ) |
| 121 |
104 120
|
fveq12d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ i ) = ( ( p |` ( 0 ... y ) ) ` i ) ) |
| 122 |
119 121
|
eqtrid |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` i ) = ( ( p |` ( 0 ... y ) ) ` i ) ) |
| 123 |
|
csbfv12 |
|- [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` ( i + 1 ) ) = ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ ( i + 1 ) ) |
| 124 |
|
csbconstg |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( i + 1 ) = ( i + 1 ) ) |
| 125 |
104 124
|
fveq12d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [_ ( p |` ( 0 ... y ) ) / p ]_ p ` [_ ( p |` ( 0 ... y ) ) / p ]_ ( i + 1 ) ) = ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) |
| 126 |
123 125
|
eqtrid |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` ( i + 1 ) ) = ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) |
| 127 |
122 126
|
oveq12d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` i ) [,) [_ ( p |` ( 0 ... y ) ) / p ]_ ( p ` ( i + 1 ) ) ) = ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) |
| 128 |
118 127
|
eqtrd |
|- ( ( p |` ( 0 ... y ) ) e. _V -> [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) = ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) |
| 129 |
128
|
eleq2d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( X e. [_ ( p |` ( 0 ... y ) ) / p ]_ ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) ) |
| 130 |
117 129
|
bitrid |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) ) |
| 131 |
130
|
rexbidv |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( E. i e. ( 0 ..^ y ) [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) ) |
| 132 |
116 131
|
bitrid |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [. ( p |` ( 0 ... y ) ) / p ]. E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) <-> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) ) |
| 133 |
115 132
|
imbi12d |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( ( [. ( p |` ( 0 ... y ) ) / p ]. X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> [. ( p |` ( 0 ... y ) ) / p ]. E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) ) ) |
| 134 |
100 133
|
bitrd |
|- ( ( p |` ( 0 ... y ) ) e. _V -> ( [. ( p |` ( 0 ... y ) ) / p ]. ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) ) ) |
| 135 |
99 134
|
ax-mp |
|- ( [. ( p |` ( 0 ... y ) ) / p ]. ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) <-> ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) ) |
| 136 |
68 70
|
syl |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) <-> ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 137 |
136
|
adantr |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) <-> ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) ) |
| 138 |
72
|
adantl |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> X e. RR* ) |
| 139 |
|
simpr2 |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> ( p ` 0 ) <_ X ) |
| 140 |
|
xrltnle |
|- ( ( X e. RR* /\ ( p ` y ) e. RR* ) -> ( X < ( p ` y ) <-> -. ( p ` y ) <_ X ) ) |
| 141 |
72 87 140
|
syl2anr |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> ( X < ( p ` y ) <-> -. ( p ` y ) <_ X ) ) |
| 142 |
141
|
exbiri |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) -> ( -. ( p ` y ) <_ X -> X < ( p ` y ) ) ) ) |
| 143 |
142
|
com23 |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( -. ( p ` y ) <_ X -> ( ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) -> X < ( p ` y ) ) ) ) |
| 144 |
143
|
imp31 |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> X < ( p ` y ) ) |
| 145 |
138 139 144
|
3jca |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` y ) ) ) |
| 146 |
63 87
|
jca |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( p ` 0 ) e. RR* /\ ( p ` y ) e. RR* ) ) |
| 147 |
146
|
ad2antrr |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> ( ( p ` 0 ) e. RR* /\ ( p ` y ) e. RR* ) ) |
| 148 |
|
elico1 |
|- ( ( ( p ` 0 ) e. RR* /\ ( p ` y ) e. RR* ) -> ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) <-> ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` y ) ) ) ) |
| 149 |
147 148
|
syl |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) <-> ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` y ) ) ) ) |
| 150 |
145 149
|
mpbird |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) /\ ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) ) -> X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) |
| 151 |
150
|
ex |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) -> ( ( X e. RR* /\ ( p ` 0 ) <_ X /\ X < ( p ` ( y + 1 ) ) ) -> X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) ) |
| 152 |
137 151
|
sylbid |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) ) |
| 153 |
|
0elfz |
|- ( y e. NN0 -> 0 e. ( 0 ... y ) ) |
| 154 |
47 153
|
syl |
|- ( y e. NN -> 0 e. ( 0 ... y ) ) |
| 155 |
154
|
adantr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> 0 e. ( 0 ... y ) ) |
| 156 |
|
fvres |
|- ( 0 e. ( 0 ... y ) -> ( ( p |` ( 0 ... y ) ) ` 0 ) = ( p ` 0 ) ) |
| 157 |
155 156
|
syl |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( p |` ( 0 ... y ) ) ` 0 ) = ( p ` 0 ) ) |
| 158 |
157
|
eqcomd |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( p ` 0 ) = ( ( p |` ( 0 ... y ) ) ` 0 ) ) |
| 159 |
83
|
adantr |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> y e. ( 0 ... y ) ) |
| 160 |
|
fvres |
|- ( y e. ( 0 ... y ) -> ( ( p |` ( 0 ... y ) ) ` y ) = ( p ` y ) ) |
| 161 |
159 160
|
syl |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( p |` ( 0 ... y ) ) ` y ) = ( p ` y ) ) |
| 162 |
161
|
eqcomd |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( p ` y ) = ( ( p |` ( 0 ... y ) ) ` y ) ) |
| 163 |
158 162
|
oveq12d |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( ( p ` 0 ) [,) ( p ` y ) ) = ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) ) |
| 164 |
163
|
eleq2d |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) <-> X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) ) ) |
| 165 |
164
|
biimpa |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) -> X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) ) |
| 166 |
|
elfzofz |
|- ( i e. ( 0 ..^ y ) -> i e. ( 0 ... y ) ) |
| 167 |
166
|
adantl |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) /\ i e. ( 0 ..^ y ) ) -> i e. ( 0 ... y ) ) |
| 168 |
|
fvres |
|- ( i e. ( 0 ... y ) -> ( ( p |` ( 0 ... y ) ) ` i ) = ( p ` i ) ) |
| 169 |
167 168
|
syl |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( p |` ( 0 ... y ) ) ` i ) = ( p ` i ) ) |
| 170 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ y ) -> ( i + 1 ) e. ( 0 ... y ) ) |
| 171 |
170
|
adantl |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ i e. ( 0 ..^ y ) ) -> ( i + 1 ) e. ( 0 ... y ) ) |
| 172 |
|
fvres |
|- ( ( i + 1 ) e. ( 0 ... y ) -> ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) = ( p ` ( i + 1 ) ) ) |
| 173 |
171 172
|
syl |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) = ( p ` ( i + 1 ) ) ) |
| 174 |
173
|
adantlr |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) = ( p ` ( i + 1 ) ) ) |
| 175 |
169 174
|
oveq12d |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) = ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) |
| 176 |
175
|
eleq2d |
|- ( ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) /\ i e. ( 0 ..^ y ) ) -> ( X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) <-> X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 177 |
176
|
rexbidva |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) -> ( E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) <-> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 178 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
| 179 |
|
uzid |
|- ( y e. ZZ -> y e. ( ZZ>= ` y ) ) |
| 180 |
|
peano2uz |
|- ( y e. ( ZZ>= ` y ) -> ( y + 1 ) e. ( ZZ>= ` y ) ) |
| 181 |
|
fzoss2 |
|- ( ( y + 1 ) e. ( ZZ>= ` y ) -> ( 0 ..^ y ) C_ ( 0 ..^ ( y + 1 ) ) ) |
| 182 |
178 179 180 181
|
4syl |
|- ( y e. NN -> ( 0 ..^ y ) C_ ( 0 ..^ ( y + 1 ) ) ) |
| 183 |
182
|
ad2antrr |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) -> ( 0 ..^ y ) C_ ( 0 ..^ ( y + 1 ) ) ) |
| 184 |
|
ssrexv |
|- ( ( 0 ..^ y ) C_ ( 0 ..^ ( y + 1 ) ) -> ( E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 185 |
183 184
|
syl |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) -> ( E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 186 |
177 185
|
sylbid |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) -> ( E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 187 |
165 186
|
embantd |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ X e. ( ( p ` 0 ) [,) ( p ` y ) ) ) -> ( ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 188 |
187
|
ex |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> ( ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 189 |
188
|
adantr |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) -> ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> ( ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 190 |
152 189
|
syld |
|- ( ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) /\ -. ( p ` y ) <_ X ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> ( ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 191 |
190
|
ex |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( -. ( p ` y ) <_ X -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> ( ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 192 |
191
|
com34 |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( -. ( p ` y ) <_ X -> ( ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 193 |
192
|
com13 |
|- ( ( X e. ( ( ( p |` ( 0 ... y ) ) ` 0 ) [,) ( ( p |` ( 0 ... y ) ) ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( ( p |` ( 0 ... y ) ) ` i ) [,) ( ( p |` ( 0 ... y ) ) ` ( i + 1 ) ) ) ) -> ( -. ( p ` y ) <_ X -> ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 194 |
135 193
|
sylbi |
|- ( [. ( p |` ( 0 ... y ) ) / p ]. ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) -> ( -. ( p ` y ) <_ X -> ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 195 |
97 194
|
syl |
|- ( ( ( p |` ( 0 ... y ) ) e. ( RePart ` y ) /\ A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) -> ( -. ( p ` y ) <_ X -> ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 196 |
195
|
ex |
|- ( ( p |` ( 0 ... y ) ) e. ( RePart ` y ) -> ( A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) -> ( -. ( p ` y ) <_ X -> ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) ) |
| 197 |
196
|
com24 |
|- ( ( p |` ( 0 ... y ) ) e. ( RePart ` y ) -> ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( -. ( p ` y ) <_ X -> ( A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) ) |
| 198 |
96 197
|
mpcom |
|- ( ( y e. NN /\ p e. ( RePart ` ( y + 1 ) ) ) -> ( -. ( p ` y ) <_ X -> ( A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 199 |
198
|
ex |
|- ( y e. NN -> ( p e. ( RePart ` ( y + 1 ) ) -> ( -. ( p ` y ) <_ X -> ( A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) ) |
| 200 |
199
|
com24 |
|- ( y e. NN -> ( A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) -> ( -. ( p ` y ) <_ X -> ( p e. ( RePart ` ( y + 1 ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) ) |
| 201 |
200
|
imp |
|- ( ( y e. NN /\ A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) -> ( -. ( p ` y ) <_ X -> ( p e. ( RePart ` ( y + 1 ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) ) |
| 202 |
95 201
|
pm2.61d |
|- ( ( y e. NN /\ A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) -> ( p e. ( RePart ` ( y + 1 ) ) -> ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 203 |
46 202
|
ralrimi |
|- ( ( y e. NN /\ A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) -> A. p e. ( RePart ` ( y + 1 ) ) ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |
| 204 |
203
|
ex |
|- ( y e. NN -> ( A. p e. ( RePart ` y ) ( X e. ( ( p ` 0 ) [,) ( p ` y ) ) -> E. i e. ( 0 ..^ y ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) -> A. p e. ( RePart ` ( y + 1 ) ) ( X e. ( ( p ` 0 ) [,) ( p ` ( y + 1 ) ) ) -> E. i e. ( 0 ..^ ( y + 1 ) ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) ) |
| 205 |
10 18 26 34 43 204
|
nnind |
|- ( M e. NN -> A. p e. ( RePart ` M ) ( X e. ( ( p ` 0 ) [,) ( p ` M ) ) -> E. i e. ( 0 ..^ M ) X e. ( ( p ` i ) [,) ( p ` ( i + 1 ) ) ) ) ) |