Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
2 |
|
ovex |
|- ( A [,] B ) e. _V |
3 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
4 |
3
|
iccf1o |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |
5 |
4
|
simpld |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) |
6 |
|
f1oen2g |
|- ( ( ( 0 [,] 1 ) e. _V /\ ( A [,] B ) e. _V /\ ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) ) |
7 |
1 2 5 6
|
mp3an12i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) ) |