Metamath Proof Explorer


Theorem iccen

Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion iccen
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) )

Proof

Step Hyp Ref Expression
1 ovex
 |-  ( 0 [,] 1 ) e. _V
2 ovex
 |-  ( A [,] B ) e. _V
3 eqid
 |-  ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) )
4 3 iccf1o
 |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) )
5 4 simpld
 |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) )
6 f1oen2g
 |-  ( ( ( 0 [,] 1 ) e. _V /\ ( A [,] B ) e. _V /\ ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) )
7 1 2 5 6 mp3an12i
 |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) )