Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartiun.m |
|- ( ph -> M e. NN ) |
2 |
|
iccpartiun.p |
|- ( ph -> P e. ( RePart ` M ) ) |
3 |
|
fveq2 |
|- ( ( I + 1 ) = J -> ( P ` ( I + 1 ) ) = ( P ` J ) ) |
4 |
3
|
olcd |
|- ( ( I + 1 ) = J -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) |
5 |
4
|
a1d |
|- ( ( I + 1 ) = J -> ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) |
6 |
|
elfzoelz |
|- ( I e. ( 0 ..^ M ) -> I e. ZZ ) |
7 |
|
elfzoelz |
|- ( J e. ( 0 ..^ M ) -> J e. ZZ ) |
8 |
|
zltp1le |
|- ( ( I e. ZZ /\ J e. ZZ ) -> ( I < J <-> ( I + 1 ) <_ J ) ) |
9 |
8
|
biimpcd |
|- ( I < J -> ( ( I e. ZZ /\ J e. ZZ ) -> ( I + 1 ) <_ J ) ) |
10 |
9
|
adantr |
|- ( ( I < J /\ -. ( I + 1 ) = J ) -> ( ( I e. ZZ /\ J e. ZZ ) -> ( I + 1 ) <_ J ) ) |
11 |
10
|
impcom |
|- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( I + 1 ) <_ J ) |
12 |
|
df-ne |
|- ( ( I + 1 ) =/= J <-> -. ( I + 1 ) = J ) |
13 |
|
necom |
|- ( ( I + 1 ) =/= J <-> J =/= ( I + 1 ) ) |
14 |
12 13
|
sylbb1 |
|- ( -. ( I + 1 ) = J -> J =/= ( I + 1 ) ) |
15 |
14
|
adantl |
|- ( ( I < J /\ -. ( I + 1 ) = J ) -> J =/= ( I + 1 ) ) |
16 |
15
|
adantl |
|- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> J =/= ( I + 1 ) ) |
17 |
11 16
|
jca |
|- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( ( I + 1 ) <_ J /\ J =/= ( I + 1 ) ) ) |
18 |
|
peano2z |
|- ( I e. ZZ -> ( I + 1 ) e. ZZ ) |
19 |
18
|
zred |
|- ( I e. ZZ -> ( I + 1 ) e. RR ) |
20 |
|
zre |
|- ( J e. ZZ -> J e. RR ) |
21 |
19 20
|
anim12i |
|- ( ( I e. ZZ /\ J e. ZZ ) -> ( ( I + 1 ) e. RR /\ J e. RR ) ) |
22 |
21
|
adantr |
|- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( ( I + 1 ) e. RR /\ J e. RR ) ) |
23 |
|
ltlen |
|- ( ( ( I + 1 ) e. RR /\ J e. RR ) -> ( ( I + 1 ) < J <-> ( ( I + 1 ) <_ J /\ J =/= ( I + 1 ) ) ) ) |
24 |
22 23
|
syl |
|- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( ( I + 1 ) < J <-> ( ( I + 1 ) <_ J /\ J =/= ( I + 1 ) ) ) ) |
25 |
17 24
|
mpbird |
|- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( I + 1 ) < J ) |
26 |
25
|
ex |
|- ( ( I e. ZZ /\ J e. ZZ ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( I + 1 ) < J ) ) |
27 |
6 7 26
|
syl2an |
|- ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( I + 1 ) < J ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( I + 1 ) < J ) ) |
29 |
1 2
|
iccpartgt |
|- ( ph -> A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( i < j -> ( P ` i ) < ( P ` j ) ) ) |
30 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) |
31 |
|
elfzofz |
|- ( J e. ( 0 ..^ M ) -> J e. ( 0 ... M ) ) |
32 |
|
breq1 |
|- ( i = ( I + 1 ) -> ( i < j <-> ( I + 1 ) < j ) ) |
33 |
|
fveq2 |
|- ( i = ( I + 1 ) -> ( P ` i ) = ( P ` ( I + 1 ) ) ) |
34 |
33
|
breq1d |
|- ( i = ( I + 1 ) -> ( ( P ` i ) < ( P ` j ) <-> ( P ` ( I + 1 ) ) < ( P ` j ) ) ) |
35 |
32 34
|
imbi12d |
|- ( i = ( I + 1 ) -> ( ( i < j -> ( P ` i ) < ( P ` j ) ) <-> ( ( I + 1 ) < j -> ( P ` ( I + 1 ) ) < ( P ` j ) ) ) ) |
36 |
|
breq2 |
|- ( j = J -> ( ( I + 1 ) < j <-> ( I + 1 ) < J ) ) |
37 |
|
fveq2 |
|- ( j = J -> ( P ` j ) = ( P ` J ) ) |
38 |
37
|
breq2d |
|- ( j = J -> ( ( P ` ( I + 1 ) ) < ( P ` j ) <-> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) |
39 |
36 38
|
imbi12d |
|- ( j = J -> ( ( ( I + 1 ) < j -> ( P ` ( I + 1 ) ) < ( P ` j ) ) <-> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) ) |
40 |
35 39
|
rspc2v |
|- ( ( ( I + 1 ) e. ( 0 ... M ) /\ J e. ( 0 ... M ) ) -> ( A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( i < j -> ( P ` i ) < ( P ` j ) ) -> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) ) |
41 |
30 31 40
|
syl2an |
|- ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( i < j -> ( P ` i ) < ( P ` j ) ) -> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) ) |
42 |
29 41
|
mpan9 |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) |
43 |
28 42
|
syld |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) |
44 |
43
|
expdimp |
|- ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( -. ( I + 1 ) = J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) |
45 |
44
|
impcom |
|- ( ( -. ( I + 1 ) = J /\ ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) ) -> ( P ` ( I + 1 ) ) < ( P ` J ) ) |
46 |
45
|
orcd |
|- ( ( -. ( I + 1 ) = J /\ ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) |
47 |
46
|
ex |
|- ( -. ( I + 1 ) = J -> ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) |
48 |
5 47
|
pm2.61i |
|- ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) |
49 |
1
|
adantr |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> M e. NN ) |
50 |
2
|
adantr |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> P e. ( RePart ` M ) ) |
51 |
30
|
adantr |
|- ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( I + 1 ) e. ( 0 ... M ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( I + 1 ) e. ( 0 ... M ) ) |
53 |
49 50 52
|
iccpartxr |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( P ` ( I + 1 ) ) e. RR* ) |
54 |
31
|
adantl |
|- ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> J e. ( 0 ... M ) ) |
55 |
54
|
adantl |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> J e. ( 0 ... M ) ) |
56 |
49 50 55
|
iccpartxr |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( P ` J ) e. RR* ) |
57 |
53 56
|
jca |
|- ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( P ` ( I + 1 ) ) e. RR* /\ ( P ` J ) e. RR* ) ) |
58 |
57
|
adantr |
|- ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) e. RR* /\ ( P ` J ) e. RR* ) ) |
59 |
|
xrleloe |
|- ( ( ( P ` ( I + 1 ) ) e. RR* /\ ( P ` J ) e. RR* ) -> ( ( P ` ( I + 1 ) ) <_ ( P ` J ) <-> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) |
60 |
58 59
|
syl |
|- ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) <_ ( P ` J ) <-> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) |
61 |
48 60
|
mpbird |
|- ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( P ` ( I + 1 ) ) <_ ( P ` J ) ) |
62 |
61
|
exp31 |
|- ( ph -> ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( I < J -> ( P ` ( I + 1 ) ) <_ ( P ` J ) ) ) ) |