Metamath Proof Explorer


Theorem iccf1o

Description: Describe a bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] . (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypothesis iccf1o.1
|- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) )
Assertion iccf1o
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) )

Proof

Step Hyp Ref Expression
1 iccf1o.1
 |-  F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) )
2 elicc01
 |-  ( x e. ( 0 [,] 1 ) <-> ( x e. RR /\ 0 <_ x /\ x <_ 1 ) )
3 2 simp1bi
 |-  ( x e. ( 0 [,] 1 ) -> x e. RR )
4 3 adantl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> x e. RR )
5 4 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> x e. CC )
6 simpl2
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> B e. RR )
7 6 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> B e. CC )
8 5 7 mulcld
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. B ) e. CC )
9 ax-1cn
 |-  1 e. CC
10 subcl
 |-  ( ( 1 e. CC /\ x e. CC ) -> ( 1 - x ) e. CC )
11 9 5 10 sylancr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( 1 - x ) e. CC )
12 simpl1
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> A e. RR )
13 12 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> A e. CC )
14 11 13 mulcld
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) e. CC )
15 8 14 addcomd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) = ( ( ( 1 - x ) x. A ) + ( x x. B ) ) )
16 lincmb01cmp
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( ( 1 - x ) x. A ) + ( x x. B ) ) e. ( A [,] B ) )
17 15 16 eqeltrd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) e. ( A [,] B ) )
18 simpr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> y e. ( A [,] B ) )
19 simpl1
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> A e. RR )
20 simpl2
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> B e. RR )
21 elicc2
 |-  ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) )
22 21 3adant3
 |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) )
23 22 biimpa
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) )
24 23 simp1d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> y e. RR )
25 eqid
 |-  ( A - A ) = ( A - A )
26 eqid
 |-  ( B - A ) = ( B - A )
27 25 26 iccshftl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( y e. RR /\ A e. RR ) ) -> ( y e. ( A [,] B ) <-> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) )
28 19 20 24 19 27 syl22anc
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y e. ( A [,] B ) <-> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) )
29 18 28 mpbid
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) )
30 24 19 resubcld
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. RR )
31 30 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. CC )
32 difrp
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) )
33 32 biimp3a
 |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ )
34 33 adantr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) e. RR+ )
35 34 rpcnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) e. CC )
36 34 rpne0d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) =/= 0 )
37 31 35 36 divcan1d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) = ( y - A ) )
38 35 mul02d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 0 x. ( B - A ) ) = 0 )
39 19 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> A e. CC )
40 39 subidd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( A - A ) = 0 )
41 38 40 eqtr4d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 0 x. ( B - A ) ) = ( A - A ) )
42 35 mulid2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 1 x. ( B - A ) ) = ( B - A ) )
43 41 42 oveq12d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) = ( ( A - A ) [,] ( B - A ) ) )
44 29 37 43 3eltr4d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) )
45 0red
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> 0 e. RR )
46 1red
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> 1 e. RR )
47 30 34 rerpdivcld
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( y - A ) / ( B - A ) ) e. RR )
48 eqid
 |-  ( 0 x. ( B - A ) ) = ( 0 x. ( B - A ) )
49 eqid
 |-  ( 1 x. ( B - A ) ) = ( 1 x. ( B - A ) )
50 48 49 iccdil
 |-  ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( ( ( y - A ) / ( B - A ) ) e. RR /\ ( B - A ) e. RR+ ) ) -> ( ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) <-> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) )
51 45 46 47 34 50 syl22anc
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) <-> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) )
52 44 51 mpbird
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) )
53 eqcom
 |-  ( x = ( ( y - A ) / ( B - A ) ) <-> ( ( y - A ) / ( B - A ) ) = x )
54 31 adantrl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( y - A ) e. CC )
55 5 adantrr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> x e. CC )
56 35 adantrl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( B - A ) e. CC )
57 36 adantrl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( B - A ) =/= 0 )
58 54 55 56 57 divmul3d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( ( y - A ) / ( B - A ) ) = x <-> ( y - A ) = ( x x. ( B - A ) ) ) )
59 53 58 syl5bb
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x = ( ( y - A ) / ( B - A ) ) <-> ( y - A ) = ( x x. ( B - A ) ) ) )
60 24 adantrl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> y e. RR )
61 60 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> y e. CC )
62 39 adantrl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> A e. CC )
63 6 12 resubcld
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( B - A ) e. RR )
64 4 63 remulcld
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. ( B - A ) ) e. RR )
65 64 adantrr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x x. ( B - A ) ) e. RR )
66 65 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x x. ( B - A ) ) e. CC )
67 61 62 66 subadd2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( y - A ) = ( x x. ( B - A ) ) <-> ( ( x x. ( B - A ) ) + A ) = y ) )
68 eqcom
 |-  ( ( ( x x. ( B - A ) ) + A ) = y <-> y = ( ( x x. ( B - A ) ) + A ) )
69 67 68 bitrdi
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( y - A ) = ( x x. ( B - A ) ) <-> y = ( ( x x. ( B - A ) ) + A ) ) )
70 5 13 mulcld
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. A ) e. CC )
71 8 70 13 subadd23d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( ( x x. B ) - ( x x. A ) ) + A ) = ( ( x x. B ) + ( A - ( x x. A ) ) ) )
72 5 7 13 subdid
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. ( B - A ) ) = ( ( x x. B ) - ( x x. A ) ) )
73 72 oveq1d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( ( x x. B ) - ( x x. A ) ) + A ) )
74 1cnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> 1 e. CC )
75 74 5 13 subdird
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) = ( ( 1 x. A ) - ( x x. A ) ) )
76 13 mulid2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( 1 x. A ) = A )
77 76 oveq1d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 x. A ) - ( x x. A ) ) = ( A - ( x x. A ) ) )
78 75 77 eqtrd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) = ( A - ( x x. A ) ) )
79 78 oveq2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) = ( ( x x. B ) + ( A - ( x x. A ) ) ) )
80 71 73 79 3eqtr4d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) )
81 80 adantrr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) )
82 81 eqeq2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( y = ( ( x x. ( B - A ) ) + A ) <-> y = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) )
83 59 69 82 3bitrd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x = ( ( y - A ) / ( B - A ) ) <-> y = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) )
84 1 17 52 83 f1ocnv2d
 |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) )