Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | iccgelb | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) ) |
|
2 | 1 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,] B ) ) -> ( C e. RR* /\ A <_ C /\ C <_ B ) ) |
3 | 2 | simp2d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,] B ) ) -> A <_ C ) |
4 | 3 | 3impa | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C ) |