Metamath Proof Explorer


Theorem iccgelb

Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016)

Ref Expression
Assertion iccgelb
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C )

Proof

Step Hyp Ref Expression
1 elicc1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) )
2 1 biimpa
 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,] B ) ) -> ( C e. RR* /\ A <_ C /\ C <_ B ) )
3 2 simp2d
 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,] B ) ) -> A <_ C )
4 3 3impa
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C )