Step |
Hyp |
Ref |
Expression |
1 |
|
elicc1 |
|- ( ( A e. RR* /\ A e. RR* ) -> ( x e. ( A [,] A ) <-> ( x e. RR* /\ A <_ x /\ x <_ A ) ) ) |
2 |
1
|
anidms |
|- ( A e. RR* -> ( x e. ( A [,] A ) <-> ( x e. RR* /\ A <_ x /\ x <_ A ) ) ) |
3 |
|
xrlenlt |
|- ( ( A e. RR* /\ x e. RR* ) -> ( A <_ x <-> -. x < A ) ) |
4 |
|
xrlenlt |
|- ( ( x e. RR* /\ A e. RR* ) -> ( x <_ A <-> -. A < x ) ) |
5 |
4
|
ancoms |
|- ( ( A e. RR* /\ x e. RR* ) -> ( x <_ A <-> -. A < x ) ) |
6 |
|
xrlttri3 |
|- ( ( x e. RR* /\ A e. RR* ) -> ( x = A <-> ( -. x < A /\ -. A < x ) ) ) |
7 |
6
|
biimprd |
|- ( ( x e. RR* /\ A e. RR* ) -> ( ( -. x < A /\ -. A < x ) -> x = A ) ) |
8 |
7
|
ancoms |
|- ( ( A e. RR* /\ x e. RR* ) -> ( ( -. x < A /\ -. A < x ) -> x = A ) ) |
9 |
8
|
expcomd |
|- ( ( A e. RR* /\ x e. RR* ) -> ( -. A < x -> ( -. x < A -> x = A ) ) ) |
10 |
5 9
|
sylbid |
|- ( ( A e. RR* /\ x e. RR* ) -> ( x <_ A -> ( -. x < A -> x = A ) ) ) |
11 |
10
|
com23 |
|- ( ( A e. RR* /\ x e. RR* ) -> ( -. x < A -> ( x <_ A -> x = A ) ) ) |
12 |
3 11
|
sylbid |
|- ( ( A e. RR* /\ x e. RR* ) -> ( A <_ x -> ( x <_ A -> x = A ) ) ) |
13 |
12
|
ex |
|- ( A e. RR* -> ( x e. RR* -> ( A <_ x -> ( x <_ A -> x = A ) ) ) ) |
14 |
13
|
3impd |
|- ( A e. RR* -> ( ( x e. RR* /\ A <_ x /\ x <_ A ) -> x = A ) ) |
15 |
|
eleq1a |
|- ( A e. RR* -> ( x = A -> x e. RR* ) ) |
16 |
|
xrleid |
|- ( A e. RR* -> A <_ A ) |
17 |
|
breq2 |
|- ( x = A -> ( A <_ x <-> A <_ A ) ) |
18 |
16 17
|
syl5ibrcom |
|- ( A e. RR* -> ( x = A -> A <_ x ) ) |
19 |
|
breq1 |
|- ( x = A -> ( x <_ A <-> A <_ A ) ) |
20 |
16 19
|
syl5ibrcom |
|- ( A e. RR* -> ( x = A -> x <_ A ) ) |
21 |
15 18 20
|
3jcad |
|- ( A e. RR* -> ( x = A -> ( x e. RR* /\ A <_ x /\ x <_ A ) ) ) |
22 |
14 21
|
impbid |
|- ( A e. RR* -> ( ( x e. RR* /\ A <_ x /\ x <_ A ) <-> x = A ) ) |
23 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
24 |
22 23
|
bitr4di |
|- ( A e. RR* -> ( ( x e. RR* /\ A <_ x /\ x <_ A ) <-> x e. { A } ) ) |
25 |
2 24
|
bitrd |
|- ( A e. RR* -> ( x e. ( A [,] A ) <-> x e. { A } ) ) |
26 |
25
|
eqrdv |
|- ( A e. RR* -> ( A [,] A ) = { A } ) |