Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> A e. RR* ) |
2 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> B e. RR* ) |
3 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x e. ( A [,] B ) ) |
4 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x <_ B ) |
6 |
|
simpl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> C e. RR* ) |
7 |
|
simprr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x e. ( B [,] C ) ) |
8 |
|
iccgelb |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> B <_ x ) |
9 |
2 6 7 8
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> B <_ x ) |
10 |
|
eliccxr |
|- ( x e. ( A [,] B ) -> x e. RR* ) |
11 |
3 10
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x e. RR* ) |
12 |
11 2
|
jca |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> ( x e. RR* /\ B e. RR* ) ) |
13 |
|
xrletri3 |
|- ( ( x e. RR* /\ B e. RR* ) -> ( x = B <-> ( x <_ B /\ B <_ x ) ) ) |
14 |
12 13
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> ( x = B <-> ( x <_ B /\ B <_ x ) ) ) |
15 |
5 9 14
|
mpbir2and |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x = B ) |
16 |
15
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) -> x = B ) ) |
17 |
16
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) -> x = B ) ) |
18 |
|
simpll1 |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> A e. RR* ) |
19 |
|
simpll2 |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> B e. RR* ) |
20 |
|
simplrl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> A <_ B ) |
21 |
|
simpr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> x = B ) |
22 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ x = B ) -> x = B ) |
23 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
24 |
23
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ x = B ) -> B e. ( A [,] B ) ) |
25 |
22 24
|
eqeltrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ x = B ) -> x e. ( A [,] B ) ) |
26 |
18 19 20 21 25
|
syl31anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> x e. ( A [,] B ) ) |
27 |
|
simpll3 |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> C e. RR* ) |
28 |
|
simplrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> B <_ C ) |
29 |
|
simpr |
|- ( ( ( B e. RR* /\ C e. RR* /\ B <_ C ) /\ x = B ) -> x = B ) |
30 |
|
lbicc2 |
|- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> B e. ( B [,] C ) ) |
31 |
30
|
adantr |
|- ( ( ( B e. RR* /\ C e. RR* /\ B <_ C ) /\ x = B ) -> B e. ( B [,] C ) ) |
32 |
29 31
|
eqeltrd |
|- ( ( ( B e. RR* /\ C e. RR* /\ B <_ C ) /\ x = B ) -> x e. ( B [,] C ) ) |
33 |
19 27 28 21 32
|
syl31anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> x e. ( B [,] C ) ) |
34 |
26 33
|
jca |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) |
35 |
34
|
ex |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( x = B -> ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) ) |
36 |
17 35
|
impbid |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) <-> x = B ) ) |
37 |
|
elin |
|- ( x e. ( ( A [,] B ) i^i ( B [,] C ) ) <-> ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) |
38 |
|
velsn |
|- ( x e. { B } <-> x = B ) |
39 |
36 37 38
|
3bitr4g |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( x e. ( ( A [,] B ) i^i ( B [,] C ) ) <-> x e. { B } ) ) |
40 |
39
|
eqrdv |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( A [,] B ) i^i ( B [,] C ) ) = { B } ) |