Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccleub | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elicc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) ) | |
| 2 | simp3 | |- ( ( C e. RR* /\ A <_ C /\ C <_ B ) -> C <_ B ) | |
| 3 | 1 2 | biimtrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) -> C <_ B ) ) | 
| 4 | 3 | 3impia | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) |