Metamath Proof Explorer


Theorem iccleub

Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009)

Ref Expression
Assertion iccleub
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B )

Proof

Step Hyp Ref Expression
1 elicc1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) )
2 simp3
 |-  ( ( C e. RR* /\ A <_ C /\ C <_ B ) -> C <_ B )
3 1 2 syl6bi
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) -> C <_ B ) )
4 3 3impia
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B )