Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | iccleub | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) ) |
|
2 | simp3 | |- ( ( C e. RR* /\ A <_ C /\ C <_ B ) -> C <_ B ) |
|
3 | 1 2 | syl6bi | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) -> C <_ B ) ) |
4 | 3 | 3impia | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) |