Metamath Proof Explorer


Theorem iccleubd

Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iccleubd.1
|- ( ph -> A e. RR* )
iccleubd.2
|- ( ph -> B e. RR* )
iccleubd.3
|- ( ph -> C e. ( A [,] B ) )
Assertion iccleubd
|- ( ph -> C <_ B )

Proof

Step Hyp Ref Expression
1 iccleubd.1
 |-  ( ph -> A e. RR* )
2 iccleubd.2
 |-  ( ph -> B e. RR* )
3 iccleubd.3
 |-  ( ph -> C e. ( A [,] B ) )
4 iccleub
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B )
5 1 2 3 4 syl3anc
 |-  ( ph -> C <_ B )