Step |
Hyp |
Ref |
Expression |
1 |
|
mnfxr |
|- -oo e. RR* |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
|
iccval |
|- ( ( -oo e. RR* /\ +oo e. RR* ) -> ( -oo [,] +oo ) = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } ) |
4 |
1 2 3
|
mp2an |
|- ( -oo [,] +oo ) = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } |
5 |
|
rabid2 |
|- ( RR* = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } <-> A. x e. RR* ( -oo <_ x /\ x <_ +oo ) ) |
6 |
|
mnfle |
|- ( x e. RR* -> -oo <_ x ) |
7 |
|
pnfge |
|- ( x e. RR* -> x <_ +oo ) |
8 |
6 7
|
jca |
|- ( x e. RR* -> ( -oo <_ x /\ x <_ +oo ) ) |
9 |
5 8
|
mprgbir |
|- RR* = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } |
10 |
4 9
|
eqtr4i |
|- ( -oo [,] +oo ) = RR* |