Metamath Proof Explorer


Theorem iccmax

Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014)

Ref Expression
Assertion iccmax
|- ( -oo [,] +oo ) = RR*

Proof

Step Hyp Ref Expression
1 mnfxr
 |-  -oo e. RR*
2 pnfxr
 |-  +oo e. RR*
3 iccval
 |-  ( ( -oo e. RR* /\ +oo e. RR* ) -> ( -oo [,] +oo ) = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } )
4 1 2 3 mp2an
 |-  ( -oo [,] +oo ) = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) }
5 rabid2
 |-  ( RR* = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } <-> A. x e. RR* ( -oo <_ x /\ x <_ +oo ) )
6 mnfle
 |-  ( x e. RR* -> -oo <_ x )
7 pnfge
 |-  ( x e. RR* -> x <_ +oo )
8 6 7 jca
 |-  ( x e. RR* -> ( -oo <_ x /\ x <_ +oo ) )
9 5 8 mprgbir
 |-  RR* = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) }
10 4 9 eqtr4i
 |-  ( -oo [,] +oo ) = RR*