| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 2 |
|
dfss4 |
|- ( ( A [,] B ) C_ RR <-> ( RR \ ( RR \ ( A [,] B ) ) ) = ( A [,] B ) ) |
| 3 |
1 2
|
sylib |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( RR \ ( A [,] B ) ) ) = ( A [,] B ) ) |
| 4 |
|
difreicc |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) = ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) |
| 5 |
|
ioombl |
|- ( -oo (,) A ) e. dom vol |
| 6 |
|
ioombl |
|- ( B (,) +oo ) e. dom vol |
| 7 |
|
unmbl |
|- ( ( ( -oo (,) A ) e. dom vol /\ ( B (,) +oo ) e. dom vol ) -> ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. dom vol ) |
| 8 |
5 6 7
|
mp2an |
|- ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. dom vol |
| 9 |
4 8
|
eqeltrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) e. dom vol ) |
| 10 |
|
cmmbl |
|- ( ( RR \ ( A [,] B ) ) e. dom vol -> ( RR \ ( RR \ ( A [,] B ) ) ) e. dom vol ) |
| 11 |
9 10
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( RR \ ( A [,] B ) ) ) e. dom vol ) |
| 12 |
3 11
|
eqeltrrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |