Step |
Hyp |
Ref |
Expression |
1 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
2 |
|
dfss4 |
|- ( ( A [,] B ) C_ RR <-> ( RR \ ( RR \ ( A [,] B ) ) ) = ( A [,] B ) ) |
3 |
1 2
|
sylib |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( RR \ ( A [,] B ) ) ) = ( A [,] B ) ) |
4 |
|
difreicc |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) = ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) |
5 |
|
ioombl |
|- ( -oo (,) A ) e. dom vol |
6 |
|
ioombl |
|- ( B (,) +oo ) e. dom vol |
7 |
|
unmbl |
|- ( ( ( -oo (,) A ) e. dom vol /\ ( B (,) +oo ) e. dom vol ) -> ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. dom vol ) |
8 |
5 6 7
|
mp2an |
|- ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. dom vol |
9 |
4 8
|
eqeltrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) e. dom vol ) |
10 |
|
cmmbl |
|- ( ( RR \ ( A [,] B ) ) e. dom vol -> ( RR \ ( RR \ ( A [,] B ) ) ) e. dom vol ) |
11 |
9 10
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( RR \ ( A [,] B ) ) ) e. dom vol ) |
12 |
3 11
|
eqeltrrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |