Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( C e. RR -> -u C e. RR ) |
2 |
|
ax-1 |
|- ( C e. RR -> ( -u C e. RR -> C e. RR ) ) |
3 |
1 2
|
impbid2 |
|- ( C e. RR -> ( C e. RR <-> -u C e. RR ) ) |
4 |
3
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. RR <-> -u C e. RR ) ) |
5 |
|
ancom |
|- ( ( C <_ B /\ A <_ C ) <-> ( A <_ C /\ C <_ B ) ) |
6 |
|
leneg |
|- ( ( C e. RR /\ B e. RR ) -> ( C <_ B <-> -u B <_ -u C ) ) |
7 |
6
|
ancoms |
|- ( ( B e. RR /\ C e. RR ) -> ( C <_ B <-> -u B <_ -u C ) ) |
8 |
7
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C <_ B <-> -u B <_ -u C ) ) |
9 |
|
leneg |
|- ( ( A e. RR /\ C e. RR ) -> ( A <_ C <-> -u C <_ -u A ) ) |
10 |
9
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ C <-> -u C <_ -u A ) ) |
11 |
8 10
|
anbi12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C <_ B /\ A <_ C ) <-> ( -u B <_ -u C /\ -u C <_ -u A ) ) ) |
12 |
5 11
|
bitr3id |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ C /\ C <_ B ) <-> ( -u B <_ -u C /\ -u C <_ -u A ) ) ) |
13 |
4 12
|
anbi12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C e. RR /\ ( A <_ C /\ C <_ B ) ) <-> ( -u C e. RR /\ ( -u B <_ -u C /\ -u C <_ -u A ) ) ) ) |
14 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
15 |
14
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
16 |
|
3anass |
|- ( ( C e. RR /\ A <_ C /\ C <_ B ) <-> ( C e. RR /\ ( A <_ C /\ C <_ B ) ) ) |
17 |
15 16
|
bitrdi |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ ( A <_ C /\ C <_ B ) ) ) ) |
18 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
19 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
20 |
|
elicc2 |
|- ( ( -u B e. RR /\ -u A e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) ) ) |
21 |
18 19 20
|
syl2anr |
|- ( ( A e. RR /\ B e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) ) ) |
22 |
21
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) ) ) |
23 |
|
3anass |
|- ( ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) <-> ( -u C e. RR /\ ( -u B <_ -u C /\ -u C <_ -u A ) ) ) |
24 |
22 23
|
bitrdi |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ ( -u B <_ -u C /\ -u C <_ -u A ) ) ) ) |
25 |
13 17 24
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A [,] B ) <-> -u C e. ( -u B [,] -u A ) ) ) |