| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 2 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 3 |
|
icc0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 5 |
4
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A [,] B ) = (/) ) |
| 6 |
5
|
fveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) ) |
| 7 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 8 |
|
ntr0 |
|- ( ( topGen ` ran (,) ) e. Top -> ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) = (/) ) |
| 9 |
7 8
|
ax-mp |
|- ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) = (/) |
| 10 |
|
0ss |
|- (/) C_ ( { A , B } u. ( A (,) B ) ) |
| 11 |
9 10
|
eqsstri |
|- ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) C_ ( { A , B } u. ( A (,) B ) ) |
| 12 |
6 11
|
eqsstrdi |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) ) |
| 13 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 14 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 15 |
14
|
ntrss2 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 16 |
7 13 15
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 17 |
16
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 18 |
1 2
|
anim12i |
|- ( ( A e. RR /\ B e. RR ) -> ( A e. RR* /\ B e. RR* ) ) |
| 19 |
|
uncom |
|- ( { A , B } u. ( A (,) B ) ) = ( ( A (,) B ) u. { A , B } ) |
| 20 |
|
prunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 21 |
19 20
|
eqtrid |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( { A , B } u. ( A (,) B ) ) = ( A [,] B ) ) |
| 22 |
21
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A <_ B ) -> ( { A , B } u. ( A (,) B ) ) = ( A [,] B ) ) |
| 23 |
18 22
|
sylan |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( { A , B } u. ( A (,) B ) ) = ( A [,] B ) ) |
| 24 |
17 23
|
sseqtrrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) ) |
| 25 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 26 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 27 |
12 24 25 26
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) ) |
| 28 |
14
|
ntropn |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) ) |
| 29 |
7 13 28
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) ) |
| 30 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 31 |
30
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 32 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 33 |
30 32
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 34 |
33
|
mopni2 |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 35 |
31 34
|
mp3an1 |
|- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 36 |
29 35
|
sylan |
|- ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 37 |
26
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> A e. RR ) |
| 38 |
|
rphalfcl |
|- ( x e. RR+ -> ( x / 2 ) e. RR+ ) |
| 39 |
38
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) |
| 40 |
37 39
|
ltsubrpd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) < A ) |
| 41 |
39
|
rpred |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR ) |
| 42 |
37 41
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) e. RR ) |
| 43 |
42 37
|
ltnled |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) < A <-> -. A <_ ( A - ( x / 2 ) ) ) ) |
| 44 |
40 43
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. A <_ ( A - ( x / 2 ) ) ) |
| 45 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 46 |
45
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> x e. RR ) |
| 47 |
|
rphalflt |
|- ( x e. RR+ -> ( x / 2 ) < x ) |
| 48 |
47
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) < x ) |
| 49 |
41 46 37 48
|
ltsub2dd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - x ) < ( A - ( x / 2 ) ) ) |
| 50 |
37 46
|
readdcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A + x ) e. RR ) |
| 51 |
|
ltaddrp |
|- ( ( A e. RR /\ x e. RR+ ) -> A < ( A + x ) ) |
| 52 |
37 51
|
sylancom |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> A < ( A + x ) ) |
| 53 |
42 37 50 40 52
|
lttrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) < ( A + x ) ) |
| 54 |
37 46
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - x ) e. RR ) |
| 55 |
54
|
rexrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - x ) e. RR* ) |
| 56 |
50
|
rexrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A + x ) e. RR* ) |
| 57 |
|
elioo2 |
|- ( ( ( A - x ) e. RR* /\ ( A + x ) e. RR* ) -> ( ( A - ( x / 2 ) ) e. ( ( A - x ) (,) ( A + x ) ) <-> ( ( A - ( x / 2 ) ) e. RR /\ ( A - x ) < ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) < ( A + x ) ) ) ) |
| 58 |
55 56 57
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) e. ( ( A - x ) (,) ( A + x ) ) <-> ( ( A - ( x / 2 ) ) e. RR /\ ( A - x ) < ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) < ( A + x ) ) ) ) |
| 59 |
42 49 53 58
|
mpbir3and |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) e. ( ( A - x ) (,) ( A + x ) ) ) |
| 60 |
30
|
bl2ioo |
|- ( ( A e. RR /\ x e. RR ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( A - x ) (,) ( A + x ) ) ) |
| 61 |
37 46 60
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( A - x ) (,) ( A + x ) ) ) |
| 62 |
59 61
|
eleqtrrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) e. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) ) |
| 63 |
|
ssel |
|- ( ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( ( A - ( x / 2 ) ) e. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) -> ( A - ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 64 |
62 63
|
syl5com |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( A - ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 65 |
16
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 66 |
65
|
sseld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( A - ( x / 2 ) ) e. ( A [,] B ) ) ) |
| 67 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A - ( x / 2 ) ) e. ( A [,] B ) <-> ( ( A - ( x / 2 ) ) e. RR /\ A <_ ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) <_ B ) ) ) |
| 68 |
|
simp2 |
|- ( ( ( A - ( x / 2 ) ) e. RR /\ A <_ ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) <_ B ) -> A <_ ( A - ( x / 2 ) ) ) |
| 69 |
67 68
|
biimtrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A - ( x / 2 ) ) e. ( A [,] B ) -> A <_ ( A - ( x / 2 ) ) ) ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) e. ( A [,] B ) -> A <_ ( A - ( x / 2 ) ) ) ) |
| 71 |
64 66 70
|
3syld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> A <_ ( A - ( x / 2 ) ) ) ) |
| 72 |
44 71
|
mtod |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 73 |
72
|
nrexdv |
|- ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> -. E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 74 |
36 73
|
pm2.65da |
|- ( ( A e. RR /\ B e. RR ) -> -. A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 75 |
33
|
mopni2 |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 76 |
31 75
|
mp3an1 |
|- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 77 |
29 76
|
sylan |
|- ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 78 |
25
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> B e. RR ) |
| 79 |
38
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) |
| 80 |
78 79
|
ltaddrpd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> B < ( B + ( x / 2 ) ) ) |
| 81 |
79
|
rpred |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR ) |
| 82 |
78 81
|
readdcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) e. RR ) |
| 83 |
78 82
|
ltnled |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B < ( B + ( x / 2 ) ) <-> -. ( B + ( x / 2 ) ) <_ B ) ) |
| 84 |
80 83
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. ( B + ( x / 2 ) ) <_ B ) |
| 85 |
45
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> x e. RR ) |
| 86 |
78 85
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) e. RR ) |
| 87 |
|
ltsubrp |
|- ( ( B e. RR /\ x e. RR+ ) -> ( B - x ) < B ) |
| 88 |
78 87
|
sylancom |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) < B ) |
| 89 |
86 78 82 88 80
|
lttrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) < ( B + ( x / 2 ) ) ) |
| 90 |
47
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) < x ) |
| 91 |
81 85 78 90
|
ltadd2dd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) < ( B + x ) ) |
| 92 |
86
|
rexrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) e. RR* ) |
| 93 |
78 85
|
readdcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + x ) e. RR ) |
| 94 |
93
|
rexrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + x ) e. RR* ) |
| 95 |
|
elioo2 |
|- ( ( ( B - x ) e. RR* /\ ( B + x ) e. RR* ) -> ( ( B + ( x / 2 ) ) e. ( ( B - x ) (,) ( B + x ) ) <-> ( ( B + ( x / 2 ) ) e. RR /\ ( B - x ) < ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) < ( B + x ) ) ) ) |
| 96 |
92 94 95
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B + ( x / 2 ) ) e. ( ( B - x ) (,) ( B + x ) ) <-> ( ( B + ( x / 2 ) ) e. RR /\ ( B - x ) < ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) < ( B + x ) ) ) ) |
| 97 |
82 89 91 96
|
mpbir3and |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) e. ( ( B - x ) (,) ( B + x ) ) ) |
| 98 |
30
|
bl2ioo |
|- ( ( B e. RR /\ x e. RR ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( B - x ) (,) ( B + x ) ) ) |
| 99 |
78 85 98
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( B - x ) (,) ( B + x ) ) ) |
| 100 |
97 99
|
eleqtrrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) e. ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) ) |
| 101 |
|
ssel |
|- ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( ( B + ( x / 2 ) ) e. ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) -> ( B + ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 102 |
100 101
|
syl5com |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( B + ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 103 |
16
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 104 |
103
|
sseld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B + ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( B + ( x / 2 ) ) e. ( A [,] B ) ) ) |
| 105 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B + ( x / 2 ) ) e. ( A [,] B ) <-> ( ( B + ( x / 2 ) ) e. RR /\ A <_ ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) <_ B ) ) ) |
| 106 |
|
simp3 |
|- ( ( ( B + ( x / 2 ) ) e. RR /\ A <_ ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) <_ B ) -> ( B + ( x / 2 ) ) <_ B ) |
| 107 |
105 106
|
biimtrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B + ( x / 2 ) ) e. ( A [,] B ) -> ( B + ( x / 2 ) ) <_ B ) ) |
| 108 |
107
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B + ( x / 2 ) ) e. ( A [,] B ) -> ( B + ( x / 2 ) ) <_ B ) ) |
| 109 |
102 104 108
|
3syld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( B + ( x / 2 ) ) <_ B ) ) |
| 110 |
84 109
|
mtod |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 111 |
110
|
nrexdv |
|- ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> -. E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 112 |
77 111
|
pm2.65da |
|- ( ( A e. RR /\ B e. RR ) -> -. B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 113 |
|
eleq1 |
|- ( x = A -> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 114 |
113
|
notbid |
|- ( x = A -> ( -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> -. A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 115 |
|
eleq1 |
|- ( x = B -> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 116 |
115
|
notbid |
|- ( x = B -> ( -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> -. B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 117 |
114 116
|
ralprg |
|- ( ( A e. RR /\ B e. RR ) -> ( A. x e. { A , B } -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> ( -. A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) /\ -. B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) ) |
| 118 |
74 112 117
|
mpbir2and |
|- ( ( A e. RR /\ B e. RR ) -> A. x e. { A , B } -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 119 |
|
disjr |
|- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) i^i { A , B } ) = (/) <-> A. x e. { A , B } -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 120 |
118 119
|
sylibr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) i^i { A , B } ) = (/) ) |
| 121 |
|
disjssun |
|- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) i^i { A , B } ) = (/) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A (,) B ) ) ) |
| 122 |
120 121
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A (,) B ) ) ) |
| 123 |
27 122
|
mpbid |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A (,) B ) ) |
| 124 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 125 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 126 |
14
|
ssntr |
|- ( ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) /\ ( ( A (,) B ) e. ( topGen ` ran (,) ) /\ ( A (,) B ) C_ ( A [,] B ) ) ) -> ( A (,) B ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 127 |
124 125 126
|
mpanr12 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( A (,) B ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 128 |
7 13 127
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 129 |
123 128
|
eqssd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |