Metamath Proof Explorer


Theorem iccpartel

Description: If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m
|- ( ph -> M e. NN )
iccpartgtprec.p
|- ( ph -> P e. ( RePart ` M ) )
Assertion iccpartel
|- ( ( ph /\ I e. ( 0 ... M ) ) -> ( P ` I ) e. ( ( P ` 0 ) [,] ( P ` M ) ) )

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m
 |-  ( ph -> M e. NN )
2 iccpartgtprec.p
 |-  ( ph -> P e. ( RePart ` M ) )
3 1 2 iccpartf
 |-  ( ph -> P : ( 0 ... M ) --> ( ( P ` 0 ) [,] ( P ` M ) ) )
4 3 ffvelrnda
 |-  ( ( ph /\ I e. ( 0 ... M ) ) -> ( P ` I ) e. ( ( P ` 0 ) [,] ( P ` M ) ) )