| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
| 2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
| 3 |
|
iccpart |
|- ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) |
| 4 |
|
elmapfn |
|- ( P e. ( RR* ^m ( 0 ... M ) ) -> P Fn ( 0 ... M ) ) |
| 5 |
4
|
adantr |
|- ( ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) -> P Fn ( 0 ... M ) ) |
| 6 |
3 5
|
biimtrdi |
|- ( M e. NN -> ( P e. ( RePart ` M ) -> P Fn ( 0 ... M ) ) ) |
| 7 |
1 2 6
|
sylc |
|- ( ph -> P Fn ( 0 ... M ) ) |
| 8 |
1 2
|
iccpartrn |
|- ( ph -> ran P C_ ( ( P ` 0 ) [,] ( P ` M ) ) ) |
| 9 |
|
df-f |
|- ( P : ( 0 ... M ) --> ( ( P ` 0 ) [,] ( P ` M ) ) <-> ( P Fn ( 0 ... M ) /\ ran P C_ ( ( P ` 0 ) [,] ( P ` M ) ) ) ) |
| 10 |
7 8 9
|
sylanbrc |
|- ( ph -> P : ( 0 ... M ) --> ( ( P ` 0 ) [,] ( P ` M ) ) ) |