Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
3 |
1
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
4 |
|
elnn0uz |
|- ( M e. NN0 <-> M e. ( ZZ>= ` 0 ) ) |
5 |
3 4
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
6 |
|
fzpred |
|- ( M e. ( ZZ>= ` 0 ) -> ( 0 ... M ) = ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) |
7 |
5 6
|
syl |
|- ( ph -> ( 0 ... M ) = ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) |
8 |
7
|
eleq2d |
|- ( ph -> ( i e. ( 0 ... M ) <-> i e. ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) ) |
9 |
|
elun |
|- ( i e. ( { 0 } u. ( ( 0 + 1 ) ... M ) ) <-> ( i e. { 0 } \/ i e. ( ( 0 + 1 ) ... M ) ) ) |
10 |
9
|
a1i |
|- ( ph -> ( i e. ( { 0 } u. ( ( 0 + 1 ) ... M ) ) <-> ( i e. { 0 } \/ i e. ( ( 0 + 1 ) ... M ) ) ) ) |
11 |
|
velsn |
|- ( i e. { 0 } <-> i = 0 ) |
12 |
11
|
a1i |
|- ( ph -> ( i e. { 0 } <-> i = 0 ) ) |
13 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
14 |
13
|
a1i |
|- ( ph -> ( 0 + 1 ) = 1 ) |
15 |
14
|
oveq1d |
|- ( ph -> ( ( 0 + 1 ) ... M ) = ( 1 ... M ) ) |
16 |
15
|
eleq2d |
|- ( ph -> ( i e. ( ( 0 + 1 ) ... M ) <-> i e. ( 1 ... M ) ) ) |
17 |
12 16
|
orbi12d |
|- ( ph -> ( ( i e. { 0 } \/ i e. ( ( 0 + 1 ) ... M ) ) <-> ( i = 0 \/ i e. ( 1 ... M ) ) ) ) |
18 |
8 10 17
|
3bitrd |
|- ( ph -> ( i e. ( 0 ... M ) <-> ( i = 0 \/ i e. ( 1 ... M ) ) ) ) |
19 |
|
0elfz |
|- ( M e. NN0 -> 0 e. ( 0 ... M ) ) |
20 |
3 19
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
21 |
1 2 20
|
iccpartxr |
|- ( ph -> ( P ` 0 ) e. RR* ) |
22 |
21
|
xrleidd |
|- ( ph -> ( P ` 0 ) <_ ( P ` 0 ) ) |
23 |
|
fveq2 |
|- ( i = 0 -> ( P ` i ) = ( P ` 0 ) ) |
24 |
23
|
breq2d |
|- ( i = 0 -> ( ( P ` 0 ) <_ ( P ` i ) <-> ( P ` 0 ) <_ ( P ` 0 ) ) ) |
25 |
22 24
|
syl5ibr |
|- ( i = 0 -> ( ph -> ( P ` 0 ) <_ ( P ` i ) ) ) |
26 |
21
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` 0 ) e. RR* ) |
27 |
1
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> M e. NN ) |
28 |
2
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> P e. ( RePart ` M ) ) |
29 |
|
1nn0 |
|- 1 e. NN0 |
30 |
29
|
a1i |
|- ( ph -> 1 e. NN0 ) |
31 |
|
elnn0uz |
|- ( 1 e. NN0 <-> 1 e. ( ZZ>= ` 0 ) ) |
32 |
30 31
|
sylib |
|- ( ph -> 1 e. ( ZZ>= ` 0 ) ) |
33 |
|
fzss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... M ) C_ ( 0 ... M ) ) |
34 |
32 33
|
syl |
|- ( ph -> ( 1 ... M ) C_ ( 0 ... M ) ) |
35 |
34
|
sselda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> i e. ( 0 ... M ) ) |
36 |
27 28 35
|
iccpartxr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` i ) e. RR* ) |
37 |
1 2
|
iccpartgtl |
|- ( ph -> A. k e. ( 1 ... M ) ( P ` 0 ) < ( P ` k ) ) |
38 |
|
fveq2 |
|- ( k = i -> ( P ` k ) = ( P ` i ) ) |
39 |
38
|
breq2d |
|- ( k = i -> ( ( P ` 0 ) < ( P ` k ) <-> ( P ` 0 ) < ( P ` i ) ) ) |
40 |
39
|
rspccv |
|- ( A. k e. ( 1 ... M ) ( P ` 0 ) < ( P ` k ) -> ( i e. ( 1 ... M ) -> ( P ` 0 ) < ( P ` i ) ) ) |
41 |
37 40
|
syl |
|- ( ph -> ( i e. ( 1 ... M ) -> ( P ` 0 ) < ( P ` i ) ) ) |
42 |
41
|
imp |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` 0 ) < ( P ` i ) ) |
43 |
26 36 42
|
xrltled |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` 0 ) <_ ( P ` i ) ) |
44 |
43
|
expcom |
|- ( i e. ( 1 ... M ) -> ( ph -> ( P ` 0 ) <_ ( P ` i ) ) ) |
45 |
25 44
|
jaoi |
|- ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( ph -> ( P ` 0 ) <_ ( P ` i ) ) ) |
46 |
45
|
com12 |
|- ( ph -> ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( P ` 0 ) <_ ( P ` i ) ) ) |
47 |
18 46
|
sylbid |
|- ( ph -> ( i e. ( 0 ... M ) -> ( P ` 0 ) <_ ( P ` i ) ) ) |
48 |
47
|
ralrimiv |
|- ( ph -> A. i e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` i ) ) |