Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
3 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
4 |
1 3
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
5 |
|
fzisfzounsn |
|- ( M e. ( ZZ>= ` 1 ) -> ( 1 ... M ) = ( ( 1 ..^ M ) u. { M } ) ) |
6 |
4 5
|
syl |
|- ( ph -> ( 1 ... M ) = ( ( 1 ..^ M ) u. { M } ) ) |
7 |
6
|
eleq2d |
|- ( ph -> ( i e. ( 1 ... M ) <-> i e. ( ( 1 ..^ M ) u. { M } ) ) ) |
8 |
|
elun |
|- ( i e. ( ( 1 ..^ M ) u. { M } ) <-> ( i e. ( 1 ..^ M ) \/ i e. { M } ) ) |
9 |
8
|
a1i |
|- ( ph -> ( i e. ( ( 1 ..^ M ) u. { M } ) <-> ( i e. ( 1 ..^ M ) \/ i e. { M } ) ) ) |
10 |
|
velsn |
|- ( i e. { M } <-> i = M ) |
11 |
10
|
a1i |
|- ( ph -> ( i e. { M } <-> i = M ) ) |
12 |
11
|
orbi2d |
|- ( ph -> ( ( i e. ( 1 ..^ M ) \/ i e. { M } ) <-> ( i e. ( 1 ..^ M ) \/ i = M ) ) ) |
13 |
7 9 12
|
3bitrd |
|- ( ph -> ( i e. ( 1 ... M ) <-> ( i e. ( 1 ..^ M ) \/ i = M ) ) ) |
14 |
|
fveq2 |
|- ( k = i -> ( P ` k ) = ( P ` i ) ) |
15 |
14
|
breq2d |
|- ( k = i -> ( ( P ` 0 ) < ( P ` k ) <-> ( P ` 0 ) < ( P ` i ) ) ) |
16 |
15
|
rspccv |
|- ( A. k e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` k ) -> ( i e. ( 1 ..^ M ) -> ( P ` 0 ) < ( P ` i ) ) ) |
17 |
1 2
|
iccpartigtl |
|- ( ph -> A. k e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` k ) ) |
18 |
16 17
|
syl11 |
|- ( i e. ( 1 ..^ M ) -> ( ph -> ( P ` 0 ) < ( P ` i ) ) ) |
19 |
1 2
|
iccpartlt |
|- ( ph -> ( P ` 0 ) < ( P ` M ) ) |
20 |
19
|
adantl |
|- ( ( i = M /\ ph ) -> ( P ` 0 ) < ( P ` M ) ) |
21 |
|
fveq2 |
|- ( i = M -> ( P ` i ) = ( P ` M ) ) |
22 |
21
|
adantr |
|- ( ( i = M /\ ph ) -> ( P ` i ) = ( P ` M ) ) |
23 |
20 22
|
breqtrrd |
|- ( ( i = M /\ ph ) -> ( P ` 0 ) < ( P ` i ) ) |
24 |
23
|
ex |
|- ( i = M -> ( ph -> ( P ` 0 ) < ( P ` i ) ) ) |
25 |
18 24
|
jaoi |
|- ( ( i e. ( 1 ..^ M ) \/ i = M ) -> ( ph -> ( P ` 0 ) < ( P ` i ) ) ) |
26 |
25
|
com12 |
|- ( ph -> ( ( i e. ( 1 ..^ M ) \/ i = M ) -> ( P ` 0 ) < ( P ` i ) ) ) |
27 |
13 26
|
sylbid |
|- ( ph -> ( i e. ( 1 ... M ) -> ( P ` 0 ) < ( P ` i ) ) ) |
28 |
27
|
ralrimiv |
|- ( ph -> A. i e. ( 1 ... M ) ( P ` 0 ) < ( P ` i ) ) |