| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
| 2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
| 3 |
|
ral0 |
|- A. i e. (/) ( P ` i ) < ( P ` 1 ) |
| 4 |
|
oveq2 |
|- ( M = 1 -> ( 1 ..^ M ) = ( 1 ..^ 1 ) ) |
| 5 |
|
fzo0 |
|- ( 1 ..^ 1 ) = (/) |
| 6 |
4 5
|
eqtrdi |
|- ( M = 1 -> ( 1 ..^ M ) = (/) ) |
| 7 |
|
fveq2 |
|- ( M = 1 -> ( P ` M ) = ( P ` 1 ) ) |
| 8 |
7
|
breq2d |
|- ( M = 1 -> ( ( P ` i ) < ( P ` M ) <-> ( P ` i ) < ( P ` 1 ) ) ) |
| 9 |
6 8
|
raleqbidv |
|- ( M = 1 -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) <-> A. i e. (/) ( P ` i ) < ( P ` 1 ) ) ) |
| 10 |
3 9
|
mpbiri |
|- ( M = 1 -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) |
| 11 |
10
|
2a1d |
|- ( M = 1 -> ( ph -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) ) |
| 12 |
|
simpr |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M e. NN ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ -. M = 1 ) -> P e. ( RePart ` M ) ) |
| 14 |
13
|
adantr |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> P e. ( RePart ` M ) ) |
| 15 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 16 |
|
nn0fz0 |
|- ( M e. NN0 <-> M e. ( 0 ... M ) ) |
| 17 |
15 16
|
sylib |
|- ( M e. NN -> M e. ( 0 ... M ) ) |
| 18 |
17
|
adantl |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M e. ( 0 ... M ) ) |
| 19 |
12 14 18
|
iccpartxr |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> ( P ` M ) e. RR* ) |
| 20 |
|
elxr |
|- ( ( P ` M ) e. RR* <-> ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) ) |
| 21 |
|
elfzoelz |
|- ( i e. ( 1 ..^ M ) -> i e. ZZ ) |
| 22 |
21
|
ad2antll |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> i e. ZZ ) |
| 23 |
|
elfzo2 |
|- ( i e. ( 1 ..^ M ) <-> ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) |
| 24 |
|
eluzelz |
|- ( i e. ( ZZ>= ` 1 ) -> i e. ZZ ) |
| 25 |
24
|
peano2zd |
|- ( i e. ( ZZ>= ` 1 ) -> ( i + 1 ) e. ZZ ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( i + 1 ) e. ZZ ) |
| 27 |
|
simp2 |
|- ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> M e. ZZ ) |
| 28 |
|
zltp1le |
|- ( ( i e. ZZ /\ M e. ZZ ) -> ( i < M <-> ( i + 1 ) <_ M ) ) |
| 29 |
24 28
|
sylan |
|- ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> ( i < M <-> ( i + 1 ) <_ M ) ) |
| 30 |
29
|
biimp3a |
|- ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( i + 1 ) <_ M ) |
| 31 |
|
eluz2 |
|- ( M e. ( ZZ>= ` ( i + 1 ) ) <-> ( ( i + 1 ) e. ZZ /\ M e. ZZ /\ ( i + 1 ) <_ M ) ) |
| 32 |
26 27 30 31
|
syl3anbrc |
|- ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> M e. ( ZZ>= ` ( i + 1 ) ) ) |
| 33 |
23 32
|
sylbi |
|- ( i e. ( 1 ..^ M ) -> M e. ( ZZ>= ` ( i + 1 ) ) ) |
| 34 |
33
|
ad2antll |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. ( ZZ>= ` ( i + 1 ) ) ) |
| 35 |
|
fveq2 |
|- ( k = M -> ( P ` k ) = ( P ` M ) ) |
| 36 |
35
|
eqcomd |
|- ( k = M -> ( P ` M ) = ( P ` k ) ) |
| 37 |
36
|
eleq1d |
|- ( k = M -> ( ( P ` M ) e. RR <-> ( P ` k ) e. RR ) ) |
| 38 |
37
|
biimpcd |
|- ( ( P ` M ) e. RR -> ( k = M -> ( P ` k ) e. RR ) ) |
| 39 |
38
|
adantr |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( k = M -> ( P ` k ) e. RR ) ) |
| 40 |
39
|
adantr |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( k = M -> ( P ` k ) e. RR ) ) |
| 41 |
40
|
com12 |
|- ( k = M -> ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( P ` k ) e. RR ) ) |
| 42 |
12
|
adantr |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> M e. NN ) |
| 43 |
42
|
adantl |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. NN ) |
| 44 |
43
|
adantr |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> M e. NN ) |
| 45 |
44
|
adantl |
|- ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> M e. NN ) |
| 46 |
14
|
adantr |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> P e. ( RePart ` M ) ) |
| 47 |
46
|
adantl |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> P e. ( RePart ` M ) ) |
| 48 |
47
|
adantr |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> P e. ( RePart ` M ) ) |
| 49 |
48
|
adantl |
|- ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> P e. ( RePart ` M ) ) |
| 50 |
|
elfz2 |
|- ( k e. ( i ... M ) <-> ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) ) |
| 51 |
|
eluz2 |
|- ( i e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ i e. ZZ /\ 1 <_ i ) ) |
| 52 |
|
1red |
|- ( ( i e. ZZ /\ k e. ZZ ) -> 1 e. RR ) |
| 53 |
|
zre |
|- ( i e. ZZ -> i e. RR ) |
| 54 |
53
|
adantr |
|- ( ( i e. ZZ /\ k e. ZZ ) -> i e. RR ) |
| 55 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
| 56 |
55
|
adantl |
|- ( ( i e. ZZ /\ k e. ZZ ) -> k e. RR ) |
| 57 |
|
letr |
|- ( ( 1 e. RR /\ i e. RR /\ k e. RR ) -> ( ( 1 <_ i /\ i <_ k ) -> 1 <_ k ) ) |
| 58 |
52 54 56 57
|
syl3anc |
|- ( ( i e. ZZ /\ k e. ZZ ) -> ( ( 1 <_ i /\ i <_ k ) -> 1 <_ k ) ) |
| 59 |
58
|
expcomd |
|- ( ( i e. ZZ /\ k e. ZZ ) -> ( i <_ k -> ( 1 <_ i -> 1 <_ k ) ) ) |
| 60 |
59
|
adantrd |
|- ( ( i e. ZZ /\ k e. ZZ ) -> ( ( i <_ k /\ k <_ M ) -> ( 1 <_ i -> 1 <_ k ) ) ) |
| 61 |
60
|
3adant2 |
|- ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( i <_ k /\ k <_ M ) -> ( 1 <_ i -> 1 <_ k ) ) ) |
| 62 |
61
|
imp |
|- ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> ( 1 <_ i -> 1 <_ k ) ) |
| 63 |
62
|
com12 |
|- ( 1 <_ i -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) |
| 64 |
63
|
3ad2ant3 |
|- ( ( 1 e. ZZ /\ i e. ZZ /\ 1 <_ i ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) |
| 65 |
51 64
|
sylbi |
|- ( i e. ( ZZ>= ` 1 ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) |
| 66 |
65
|
3ad2ant1 |
|- ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) |
| 67 |
23 66
|
sylbi |
|- ( i e. ( 1 ..^ M ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) |
| 68 |
50 67
|
biimtrid |
|- ( i e. ( 1 ..^ M ) -> ( k e. ( i ... M ) -> 1 <_ k ) ) |
| 69 |
68
|
imp |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) ) -> 1 <_ k ) |
| 70 |
69
|
3adant3 |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> 1 <_ k ) |
| 71 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 72 |
71 55
|
anim12ci |
|- ( ( M e. ZZ /\ k e. ZZ ) -> ( k e. RR /\ M e. RR ) ) |
| 73 |
72
|
3adant1 |
|- ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( k e. RR /\ M e. RR ) ) |
| 74 |
|
ltlen |
|- ( ( k e. RR /\ M e. RR ) -> ( k < M <-> ( k <_ M /\ M =/= k ) ) ) |
| 75 |
73 74
|
syl |
|- ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( k < M <-> ( k <_ M /\ M =/= k ) ) ) |
| 76 |
|
nesym |
|- ( M =/= k <-> -. k = M ) |
| 77 |
76
|
anbi2i |
|- ( ( k <_ M /\ M =/= k ) <-> ( k <_ M /\ -. k = M ) ) |
| 78 |
75 77
|
bitr2di |
|- ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( k <_ M /\ -. k = M ) <-> k < M ) ) |
| 79 |
78
|
biimpd |
|- ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( k <_ M /\ -. k = M ) -> k < M ) ) |
| 80 |
79
|
expd |
|- ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( k <_ M -> ( -. k = M -> k < M ) ) ) |
| 81 |
80
|
adantld |
|- ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( i <_ k /\ k <_ M ) -> ( -. k = M -> k < M ) ) ) |
| 82 |
81
|
imp |
|- ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> ( -. k = M -> k < M ) ) |
| 83 |
50 82
|
sylbi |
|- ( k e. ( i ... M ) -> ( -. k = M -> k < M ) ) |
| 84 |
83
|
imp |
|- ( ( k e. ( i ... M ) /\ -. k = M ) -> k < M ) |
| 85 |
84
|
3adant1 |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> k < M ) |
| 86 |
70 85
|
jca |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> ( 1 <_ k /\ k < M ) ) |
| 87 |
|
elfzelz |
|- ( k e. ( i ... M ) -> k e. ZZ ) |
| 88 |
|
1zzd |
|- ( k e. ( i ... M ) -> 1 e. ZZ ) |
| 89 |
|
elfzel2 |
|- ( k e. ( i ... M ) -> M e. ZZ ) |
| 90 |
87 88 89
|
3jca |
|- ( k e. ( i ... M ) -> ( k e. ZZ /\ 1 e. ZZ /\ M e. ZZ ) ) |
| 91 |
90
|
3ad2ant2 |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> ( k e. ZZ /\ 1 e. ZZ /\ M e. ZZ ) ) |
| 92 |
|
elfzo |
|- ( ( k e. ZZ /\ 1 e. ZZ /\ M e. ZZ ) -> ( k e. ( 1 ..^ M ) <-> ( 1 <_ k /\ k < M ) ) ) |
| 93 |
91 92
|
syl |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> ( k e. ( 1 ..^ M ) <-> ( 1 <_ k /\ k < M ) ) ) |
| 94 |
86 93
|
mpbird |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> k e. ( 1 ..^ M ) ) |
| 95 |
94
|
3exp |
|- ( i e. ( 1 ..^ M ) -> ( k e. ( i ... M ) -> ( -. k = M -> k e. ( 1 ..^ M ) ) ) ) |
| 96 |
95
|
ad2antll |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( k e. ( i ... M ) -> ( -. k = M -> k e. ( 1 ..^ M ) ) ) ) |
| 97 |
96
|
imp |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( -. k = M -> k e. ( 1 ..^ M ) ) ) |
| 98 |
97
|
impcom |
|- ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> k e. ( 1 ..^ M ) ) |
| 99 |
45 49 98
|
iccpartipre |
|- ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> ( P ` k ) e. RR ) |
| 100 |
99
|
ex |
|- ( -. k = M -> ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( P ` k ) e. RR ) ) |
| 101 |
41 100
|
pm2.61i |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( P ` k ) e. RR ) |
| 102 |
43
|
adantr |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> M e. NN ) |
| 103 |
47
|
adantr |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> P e. ( RePart ` M ) ) |
| 104 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
| 105 |
|
fzoss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ M ) C_ ( 0 ..^ M ) ) |
| 106 |
104 105
|
mp1i |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... ( M - 1 ) ) ) -> ( 1 ..^ M ) C_ ( 0 ..^ M ) ) |
| 107 |
|
elfzoel2 |
|- ( i e. ( 1 ..^ M ) -> M e. ZZ ) |
| 108 |
|
fzoval |
|- ( M e. ZZ -> ( i ..^ M ) = ( i ... ( M - 1 ) ) ) |
| 109 |
107 108
|
syl |
|- ( i e. ( 1 ..^ M ) -> ( i ..^ M ) = ( i ... ( M - 1 ) ) ) |
| 110 |
109
|
eqcomd |
|- ( i e. ( 1 ..^ M ) -> ( i ... ( M - 1 ) ) = ( i ..^ M ) ) |
| 111 |
110
|
eleq2d |
|- ( i e. ( 1 ..^ M ) -> ( k e. ( i ... ( M - 1 ) ) <-> k e. ( i ..^ M ) ) ) |
| 112 |
|
elfzouz |
|- ( i e. ( 1 ..^ M ) -> i e. ( ZZ>= ` 1 ) ) |
| 113 |
|
fzoss1 |
|- ( i e. ( ZZ>= ` 1 ) -> ( i ..^ M ) C_ ( 1 ..^ M ) ) |
| 114 |
112 113
|
syl |
|- ( i e. ( 1 ..^ M ) -> ( i ..^ M ) C_ ( 1 ..^ M ) ) |
| 115 |
114
|
sseld |
|- ( i e. ( 1 ..^ M ) -> ( k e. ( i ..^ M ) -> k e. ( 1 ..^ M ) ) ) |
| 116 |
111 115
|
sylbid |
|- ( i e. ( 1 ..^ M ) -> ( k e. ( i ... ( M - 1 ) ) -> k e. ( 1 ..^ M ) ) ) |
| 117 |
116
|
imp |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... ( M - 1 ) ) ) -> k e. ( 1 ..^ M ) ) |
| 118 |
106 117
|
sseldd |
|- ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... ( M - 1 ) ) ) -> k e. ( 0 ..^ M ) ) |
| 119 |
118
|
ex |
|- ( i e. ( 1 ..^ M ) -> ( k e. ( i ... ( M - 1 ) ) -> k e. ( 0 ..^ M ) ) ) |
| 120 |
119
|
ad2antll |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( k e. ( i ... ( M - 1 ) ) -> k e. ( 0 ..^ M ) ) ) |
| 121 |
120
|
imp |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> k e. ( 0 ..^ M ) ) |
| 122 |
|
iccpartimp |
|- ( ( M e. NN /\ P e. ( RePart ` M ) /\ k e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) |
| 123 |
102 103 121 122
|
syl3anc |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) |
| 124 |
123
|
simprd |
|- ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> ( P ` k ) < ( P ` ( k + 1 ) ) ) |
| 125 |
22 34 101 124
|
smonoord |
|- ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` i ) < ( P ` M ) ) |
| 126 |
125
|
ex |
|- ( ( P ` M ) e. RR -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) |
| 127 |
|
simpr |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> i e. ( 1 ..^ M ) ) |
| 128 |
42 46 127
|
iccpartipre |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) e. RR ) |
| 129 |
|
ltpnf |
|- ( ( P ` i ) e. RR -> ( P ` i ) < +oo ) |
| 130 |
128 129
|
syl |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < +oo ) |
| 131 |
|
breq2 |
|- ( ( P ` M ) = +oo -> ( ( P ` i ) < ( P ` M ) <-> ( P ` i ) < +oo ) ) |
| 132 |
130 131
|
imbitrrid |
|- ( ( P ` M ) = +oo -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) |
| 133 |
42
|
adantl |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. NN ) |
| 134 |
46
|
adantl |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> P e. ( RePart ` M ) ) |
| 135 |
|
elfzofz |
|- ( i e. ( 1 ..^ M ) -> i e. ( 1 ... M ) ) |
| 136 |
135
|
ad2antll |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> i e. ( 1 ... M ) ) |
| 137 |
|
elfzubelfz |
|- ( i e. ( 1 ... M ) -> M e. ( 1 ... M ) ) |
| 138 |
136 137
|
syl |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. ( 1 ... M ) ) |
| 139 |
133 134 138
|
iccpartgtprec |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` ( M - 1 ) ) < ( P ` M ) ) |
| 140 |
|
breq2 |
|- ( -oo = ( P ` M ) -> ( ( P ` ( M - 1 ) ) < -oo <-> ( P ` ( M - 1 ) ) < ( P ` M ) ) ) |
| 141 |
140
|
eqcoms |
|- ( ( P ` M ) = -oo -> ( ( P ` ( M - 1 ) ) < -oo <-> ( P ` ( M - 1 ) ) < ( P ` M ) ) ) |
| 142 |
141
|
adantr |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( ( P ` ( M - 1 ) ) < -oo <-> ( P ` ( M - 1 ) ) < ( P ` M ) ) ) |
| 143 |
139 142
|
mpbird |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` ( M - 1 ) ) < -oo ) |
| 144 |
15
|
adantl |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M e. NN0 ) |
| 145 |
144
|
adantr |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> M e. NN0 ) |
| 146 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
| 147 |
146
|
adantl |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M =/= 0 ) |
| 148 |
|
df-ne |
|- ( M =/= 1 <-> -. M = 1 ) |
| 149 |
148
|
biimpri |
|- ( -. M = 1 -> M =/= 1 ) |
| 150 |
149
|
adantl |
|- ( ( ph /\ -. M = 1 ) -> M =/= 1 ) |
| 151 |
150
|
adantr |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M =/= 1 ) |
| 152 |
144 147 151
|
3jca |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> ( M e. NN0 /\ M =/= 0 /\ M =/= 1 ) ) |
| 153 |
152
|
adantr |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( M e. NN0 /\ M =/= 0 /\ M =/= 1 ) ) |
| 154 |
|
nn0n0n1ge2 |
|- ( ( M e. NN0 /\ M =/= 0 /\ M =/= 1 ) -> 2 <_ M ) |
| 155 |
153 154
|
syl |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> 2 <_ M ) |
| 156 |
145 155
|
jca |
|- ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( M e. NN0 /\ 2 <_ M ) ) |
| 157 |
156
|
adantl |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( M e. NN0 /\ 2 <_ M ) ) |
| 158 |
|
ige2m1fz |
|- ( ( M e. NN0 /\ 2 <_ M ) -> ( M - 1 ) e. ( 0 ... M ) ) |
| 159 |
157 158
|
syl |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( M - 1 ) e. ( 0 ... M ) ) |
| 160 |
133 134 159
|
iccpartxr |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` ( M - 1 ) ) e. RR* ) |
| 161 |
|
nltmnf |
|- ( ( P ` ( M - 1 ) ) e. RR* -> -. ( P ` ( M - 1 ) ) < -oo ) |
| 162 |
160 161
|
syl |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> -. ( P ` ( M - 1 ) ) < -oo ) |
| 163 |
143 162
|
pm2.21dd |
|- ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` i ) < ( P ` M ) ) |
| 164 |
163
|
ex |
|- ( ( P ` M ) = -oo -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) |
| 165 |
126 132 164
|
3jaoi |
|- ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) |
| 166 |
165
|
impl |
|- ( ( ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) /\ ( ( ph /\ -. M = 1 ) /\ M e. NN ) ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) |
| 167 |
166
|
ralrimiva |
|- ( ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) /\ ( ( ph /\ -. M = 1 ) /\ M e. NN ) ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) |
| 168 |
167
|
ex |
|- ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) -> ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) |
| 169 |
20 168
|
sylbi |
|- ( ( P ` M ) e. RR* -> ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) |
| 170 |
19 169
|
mpcom |
|- ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) |
| 171 |
170
|
ex |
|- ( ( ph /\ -. M = 1 ) -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) |
| 172 |
171
|
expcom |
|- ( -. M = 1 -> ( ph -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) ) |
| 173 |
11 172
|
pm2.61i |
|- ( ph -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) |
| 174 |
1 173
|
mpd |
|- ( ph -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) |