| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
| 2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
| 3 |
|
iccpartipre.i |
|- ( ph -> I e. ( 1 ..^ M ) ) |
| 4 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
| 5 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 6 |
|
id |
|- ( M e. ZZ -> M e. ZZ ) |
| 7 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 8 |
7
|
lem1d |
|- ( M e. ZZ -> ( M - 1 ) <_ M ) |
| 9 |
5 6 8
|
3jca |
|- ( M e. ZZ -> ( ( M - 1 ) e. ZZ /\ M e. ZZ /\ ( M - 1 ) <_ M ) ) |
| 10 |
4 9
|
syl |
|- ( M e. NN -> ( ( M - 1 ) e. ZZ /\ M e. ZZ /\ ( M - 1 ) <_ M ) ) |
| 11 |
|
eluz2 |
|- ( M e. ( ZZ>= ` ( M - 1 ) ) <-> ( ( M - 1 ) e. ZZ /\ M e. ZZ /\ ( M - 1 ) <_ M ) ) |
| 12 |
10 11
|
sylibr |
|- ( M e. NN -> M e. ( ZZ>= ` ( M - 1 ) ) ) |
| 13 |
1 12
|
syl |
|- ( ph -> M e. ( ZZ>= ` ( M - 1 ) ) ) |
| 14 |
|
fzss2 |
|- ( M e. ( ZZ>= ` ( M - 1 ) ) -> ( 0 ... ( M - 1 ) ) C_ ( 0 ... M ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( 0 ... ( M - 1 ) ) C_ ( 0 ... M ) ) |
| 16 |
|
fzossfz |
|- ( 1 ..^ M ) C_ ( 1 ... M ) |
| 17 |
16 3
|
sselid |
|- ( ph -> I e. ( 1 ... M ) ) |
| 18 |
|
elfzoelz |
|- ( I e. ( 1 ..^ M ) -> I e. ZZ ) |
| 19 |
3 18
|
syl |
|- ( ph -> I e. ZZ ) |
| 20 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 21 |
|
elfzm1b |
|- ( ( I e. ZZ /\ M e. ZZ ) -> ( I e. ( 1 ... M ) <-> ( I - 1 ) e. ( 0 ... ( M - 1 ) ) ) ) |
| 22 |
19 20 21
|
syl2anc |
|- ( ph -> ( I e. ( 1 ... M ) <-> ( I - 1 ) e. ( 0 ... ( M - 1 ) ) ) ) |
| 23 |
17 22
|
mpbid |
|- ( ph -> ( I - 1 ) e. ( 0 ... ( M - 1 ) ) ) |
| 24 |
15 23
|
sseldd |
|- ( ph -> ( I - 1 ) e. ( 0 ... M ) ) |
| 25 |
1 2 24
|
iccpartxr |
|- ( ph -> ( P ` ( I - 1 ) ) e. RR* ) |
| 26 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
| 27 |
|
fzoss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ M ) C_ ( 0 ..^ M ) ) |
| 28 |
26 27
|
mp1i |
|- ( ph -> ( 1 ..^ M ) C_ ( 0 ..^ M ) ) |
| 29 |
|
fzossfz |
|- ( 0 ..^ M ) C_ ( 0 ... M ) |
| 30 |
28 29
|
sstrdi |
|- ( ph -> ( 1 ..^ M ) C_ ( 0 ... M ) ) |
| 31 |
30 3
|
sseldd |
|- ( ph -> I e. ( 0 ... M ) ) |
| 32 |
1 2 31
|
iccpartxr |
|- ( ph -> ( P ` I ) e. RR* ) |
| 33 |
28 3
|
sseldd |
|- ( ph -> I e. ( 0 ..^ M ) ) |
| 34 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 35 |
33 34
|
syl |
|- ( ph -> ( I + 1 ) e. ( 0 ... M ) ) |
| 36 |
1 2 35
|
iccpartxr |
|- ( ph -> ( P ` ( I + 1 ) ) e. RR* ) |
| 37 |
1 2 17
|
iccpartgtprec |
|- ( ph -> ( P ` ( I - 1 ) ) < ( P ` I ) ) |
| 38 |
|
iccpartimp |
|- ( ( M e. NN /\ P e. ( RePart ` M ) /\ I e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` I ) < ( P ` ( I + 1 ) ) ) ) |
| 39 |
1 2 33 38
|
syl3anc |
|- ( ph -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` I ) < ( P ` ( I + 1 ) ) ) ) |
| 40 |
39
|
simprd |
|- ( ph -> ( P ` I ) < ( P ` ( I + 1 ) ) ) |
| 41 |
|
xrre2 |
|- ( ( ( ( P ` ( I - 1 ) ) e. RR* /\ ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* ) /\ ( ( P ` ( I - 1 ) ) < ( P ` I ) /\ ( P ` I ) < ( P ` ( I + 1 ) ) ) ) -> ( P ` I ) e. RR ) |
| 42 |
25 32 36 37 40 41
|
syl32anc |
|- ( ph -> ( P ` I ) e. RR ) |