| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
| 2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
| 3 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ M ) <-> M e. NN ) |
| 4 |
1 3
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
| 5 |
|
iccpartimp |
|- ( ( M e. NN /\ P e. ( RePart ` M ) /\ 0 e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) ) |
| 6 |
1 2 4 5
|
syl3anc |
|- ( ph -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) ) |
| 7 |
6
|
simprd |
|- ( ph -> ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) |
| 8 |
7
|
adantl |
|- ( ( M = 1 /\ ph ) -> ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) |
| 9 |
|
fveq2 |
|- ( M = 1 -> ( P ` M ) = ( P ` 1 ) ) |
| 10 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 11 |
10
|
fveq2i |
|- ( P ` 1 ) = ( P ` ( 0 + 1 ) ) |
| 12 |
9 11
|
eqtrdi |
|- ( M = 1 -> ( P ` M ) = ( P ` ( 0 + 1 ) ) ) |
| 13 |
12
|
adantr |
|- ( ( M = 1 /\ ph ) -> ( P ` M ) = ( P ` ( 0 + 1 ) ) ) |
| 14 |
8 13
|
breqtrrd |
|- ( ( M = 1 /\ ph ) -> ( P ` 0 ) < ( P ` M ) ) |
| 15 |
14
|
ex |
|- ( M = 1 -> ( ph -> ( P ` 0 ) < ( P ` M ) ) ) |
| 16 |
1 2
|
iccpartiltu |
|- ( ph -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) |
| 17 |
1 2
|
iccpartigtl |
|- ( ph -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) |
| 18 |
|
1nn |
|- 1 e. NN |
| 19 |
18
|
a1i |
|- ( ( ph /\ -. M = 1 ) -> 1 e. NN ) |
| 20 |
1
|
adantr |
|- ( ( ph /\ -. M = 1 ) -> M e. NN ) |
| 21 |
|
df-ne |
|- ( M =/= 1 <-> -. M = 1 ) |
| 22 |
1
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 23 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 24 |
1
|
nnred |
|- ( ph -> M e. RR ) |
| 25 |
23 24
|
ltlend |
|- ( ph -> ( 1 < M <-> ( 1 <_ M /\ M =/= 1 ) ) ) |
| 26 |
25
|
biimprd |
|- ( ph -> ( ( 1 <_ M /\ M =/= 1 ) -> 1 < M ) ) |
| 27 |
22 26
|
mpand |
|- ( ph -> ( M =/= 1 -> 1 < M ) ) |
| 28 |
21 27
|
biimtrrid |
|- ( ph -> ( -. M = 1 -> 1 < M ) ) |
| 29 |
28
|
imp |
|- ( ( ph /\ -. M = 1 ) -> 1 < M ) |
| 30 |
|
elfzo1 |
|- ( 1 e. ( 1 ..^ M ) <-> ( 1 e. NN /\ M e. NN /\ 1 < M ) ) |
| 31 |
19 20 29 30
|
syl3anbrc |
|- ( ( ph /\ -. M = 1 ) -> 1 e. ( 1 ..^ M ) ) |
| 32 |
|
fveq2 |
|- ( i = 1 -> ( P ` i ) = ( P ` 1 ) ) |
| 33 |
32
|
breq2d |
|- ( i = 1 -> ( ( P ` 0 ) < ( P ` i ) <-> ( P ` 0 ) < ( P ` 1 ) ) ) |
| 34 |
33
|
rspcv |
|- ( 1 e. ( 1 ..^ M ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( P ` 0 ) < ( P ` 1 ) ) ) |
| 35 |
31 34
|
syl |
|- ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( P ` 0 ) < ( P ` 1 ) ) ) |
| 36 |
32
|
breq1d |
|- ( i = 1 -> ( ( P ` i ) < ( P ` M ) <-> ( P ` 1 ) < ( P ` M ) ) ) |
| 37 |
36
|
rspcv |
|- ( 1 e. ( 1 ..^ M ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 1 ) < ( P ` M ) ) ) |
| 38 |
31 37
|
syl |
|- ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 1 ) < ( P ` M ) ) ) |
| 39 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 40 |
|
0elfz |
|- ( M e. NN0 -> 0 e. ( 0 ... M ) ) |
| 41 |
1 39 40
|
3syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 42 |
1 2 41
|
iccpartxr |
|- ( ph -> ( P ` 0 ) e. RR* ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ -. M = 1 ) -> ( P ` 0 ) e. RR* ) |
| 44 |
2
|
adantr |
|- ( ( ph /\ -. M = 1 ) -> P e. ( RePart ` M ) ) |
| 45 |
|
1nn0 |
|- 1 e. NN0 |
| 46 |
45
|
a1i |
|- ( ( ph /\ -. M = 1 ) -> 1 e. NN0 ) |
| 47 |
1 39
|
syl |
|- ( ph -> M e. NN0 ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ -. M = 1 ) -> M e. NN0 ) |
| 49 |
22
|
adantr |
|- ( ( ph /\ -. M = 1 ) -> 1 <_ M ) |
| 50 |
|
elfz2nn0 |
|- ( 1 e. ( 0 ... M ) <-> ( 1 e. NN0 /\ M e. NN0 /\ 1 <_ M ) ) |
| 51 |
46 48 49 50
|
syl3anbrc |
|- ( ( ph /\ -. M = 1 ) -> 1 e. ( 0 ... M ) ) |
| 52 |
20 44 51
|
iccpartxr |
|- ( ( ph /\ -. M = 1 ) -> ( P ` 1 ) e. RR* ) |
| 53 |
|
nn0fz0 |
|- ( M e. NN0 <-> M e. ( 0 ... M ) ) |
| 54 |
39 53
|
sylib |
|- ( M e. NN -> M e. ( 0 ... M ) ) |
| 55 |
1 54
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 56 |
1 2 55
|
iccpartxr |
|- ( ph -> ( P ` M ) e. RR* ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ -. M = 1 ) -> ( P ` M ) e. RR* ) |
| 58 |
|
xrlttr |
|- ( ( ( P ` 0 ) e. RR* /\ ( P ` 1 ) e. RR* /\ ( P ` M ) e. RR* ) -> ( ( ( P ` 0 ) < ( P ` 1 ) /\ ( P ` 1 ) < ( P ` M ) ) -> ( P ` 0 ) < ( P ` M ) ) ) |
| 59 |
43 52 57 58
|
syl3anc |
|- ( ( ph /\ -. M = 1 ) -> ( ( ( P ` 0 ) < ( P ` 1 ) /\ ( P ` 1 ) < ( P ` M ) ) -> ( P ` 0 ) < ( P ` M ) ) ) |
| 60 |
59
|
expcomd |
|- ( ( ph /\ -. M = 1 ) -> ( ( P ` 1 ) < ( P ` M ) -> ( ( P ` 0 ) < ( P ` 1 ) -> ( P ` 0 ) < ( P ` M ) ) ) ) |
| 61 |
38 60
|
syld |
|- ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( ( P ` 0 ) < ( P ` 1 ) -> ( P ` 0 ) < ( P ` M ) ) ) ) |
| 62 |
61
|
com23 |
|- ( ( ph /\ -. M = 1 ) -> ( ( P ` 0 ) < ( P ` 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 0 ) < ( P ` M ) ) ) ) |
| 63 |
35 62
|
syld |
|- ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 0 ) < ( P ` M ) ) ) ) |
| 64 |
63
|
ex |
|- ( ph -> ( -. M = 1 -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 0 ) < ( P ` M ) ) ) ) ) |
| 65 |
64
|
com24 |
|- ( ph -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( -. M = 1 -> ( P ` 0 ) < ( P ` M ) ) ) ) ) |
| 66 |
16 17 65
|
mp2d |
|- ( ph -> ( -. M = 1 -> ( P ` 0 ) < ( P ` M ) ) ) |
| 67 |
66
|
com12 |
|- ( -. M = 1 -> ( ph -> ( P ` 0 ) < ( P ` M ) ) ) |
| 68 |
15 67
|
pm2.61i |
|- ( ph -> ( P ` 0 ) < ( P ` M ) ) |