Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
3 |
|
0zd |
|- ( M e. NN -> 0 e. ZZ ) |
4 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
5 |
|
nngt0 |
|- ( M e. NN -> 0 < M ) |
6 |
3 4 5
|
3jca |
|- ( M e. NN -> ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) ) |
7 |
1 6
|
syl |
|- ( ph -> ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) ) |
8 |
|
fzopred |
|- ( ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) -> ( 0 ..^ M ) = ( { 0 } u. ( ( 0 + 1 ) ..^ M ) ) ) |
9 |
7 8
|
syl |
|- ( ph -> ( 0 ..^ M ) = ( { 0 } u. ( ( 0 + 1 ) ..^ M ) ) ) |
10 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
11 |
10
|
a1i |
|- ( ph -> ( 0 + 1 ) = 1 ) |
12 |
11
|
oveq1d |
|- ( ph -> ( ( 0 + 1 ) ..^ M ) = ( 1 ..^ M ) ) |
13 |
12
|
uneq2d |
|- ( ph -> ( { 0 } u. ( ( 0 + 1 ) ..^ M ) ) = ( { 0 } u. ( 1 ..^ M ) ) ) |
14 |
9 13
|
eqtrd |
|- ( ph -> ( 0 ..^ M ) = ( { 0 } u. ( 1 ..^ M ) ) ) |
15 |
14
|
eleq2d |
|- ( ph -> ( i e. ( 0 ..^ M ) <-> i e. ( { 0 } u. ( 1 ..^ M ) ) ) ) |
16 |
|
elun |
|- ( i e. ( { 0 } u. ( 1 ..^ M ) ) <-> ( i e. { 0 } \/ i e. ( 1 ..^ M ) ) ) |
17 |
|
elsni |
|- ( i e. { 0 } -> i = 0 ) |
18 |
|
fveq2 |
|- ( i = 0 -> ( P ` i ) = ( P ` 0 ) ) |
19 |
18
|
adantr |
|- ( ( i = 0 /\ ph ) -> ( P ` i ) = ( P ` 0 ) ) |
20 |
1 2
|
iccpartlt |
|- ( ph -> ( P ` 0 ) < ( P ` M ) ) |
21 |
20
|
adantl |
|- ( ( i = 0 /\ ph ) -> ( P ` 0 ) < ( P ` M ) ) |
22 |
19 21
|
eqbrtrd |
|- ( ( i = 0 /\ ph ) -> ( P ` i ) < ( P ` M ) ) |
23 |
22
|
ex |
|- ( i = 0 -> ( ph -> ( P ` i ) < ( P ` M ) ) ) |
24 |
17 23
|
syl |
|- ( i e. { 0 } -> ( ph -> ( P ` i ) < ( P ` M ) ) ) |
25 |
|
fveq2 |
|- ( k = i -> ( P ` k ) = ( P ` i ) ) |
26 |
25
|
breq1d |
|- ( k = i -> ( ( P ` k ) < ( P ` M ) <-> ( P ` i ) < ( P ` M ) ) ) |
27 |
26
|
rspccv |
|- ( A. k e. ( 1 ..^ M ) ( P ` k ) < ( P ` M ) -> ( i e. ( 1 ..^ M ) -> ( P ` i ) < ( P ` M ) ) ) |
28 |
1 2
|
iccpartiltu |
|- ( ph -> A. k e. ( 1 ..^ M ) ( P ` k ) < ( P ` M ) ) |
29 |
27 28
|
syl11 |
|- ( i e. ( 1 ..^ M ) -> ( ph -> ( P ` i ) < ( P ` M ) ) ) |
30 |
24 29
|
jaoi |
|- ( ( i e. { 0 } \/ i e. ( 1 ..^ M ) ) -> ( ph -> ( P ` i ) < ( P ` M ) ) ) |
31 |
30
|
com12 |
|- ( ph -> ( ( i e. { 0 } \/ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) |
32 |
16 31
|
syl5bi |
|- ( ph -> ( i e. ( { 0 } u. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) |
33 |
15 32
|
sylbid |
|- ( ph -> ( i e. ( 0 ..^ M ) -> ( P ` i ) < ( P ` M ) ) ) |
34 |
33
|
ralrimiv |
|- ( ph -> A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` M ) ) |