| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartnel.m |
|- ( ph -> M e. NN ) |
| 2 |
|
iccpartnel.p |
|- ( ph -> P e. ( RePart ` M ) ) |
| 3 |
|
iccpartnel.x |
|- ( ph -> X e. ran P ) |
| 4 |
|
elioo3g |
|- ( X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) <-> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) ) |
| 5 |
|
iccpart |
|- ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) |
| 6 |
1 5
|
syl |
|- ( ph -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) |
| 7 |
|
elmapfn |
|- ( P e. ( RR* ^m ( 0 ... M ) ) -> P Fn ( 0 ... M ) ) |
| 8 |
7
|
adantr |
|- ( ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) -> P Fn ( 0 ... M ) ) |
| 9 |
6 8
|
biimtrdi |
|- ( ph -> ( P e. ( RePart ` M ) -> P Fn ( 0 ... M ) ) ) |
| 10 |
2 9
|
mpd |
|- ( ph -> P Fn ( 0 ... M ) ) |
| 11 |
|
fvelrnb |
|- ( P Fn ( 0 ... M ) -> ( X e. ran P <-> E. x e. ( 0 ... M ) ( P ` x ) = X ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( X e. ran P <-> E. x e. ( 0 ... M ) ( P ` x ) = X ) ) |
| 13 |
3 12
|
mpbid |
|- ( ph -> E. x e. ( 0 ... M ) ( P ` x ) = X ) |
| 14 |
|
elfzelz |
|- ( x e. ( 0 ... M ) -> x e. ZZ ) |
| 15 |
14
|
zred |
|- ( x e. ( 0 ... M ) -> x e. RR ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> x e. RR ) |
| 17 |
|
elfzoelz |
|- ( I e. ( 0 ..^ M ) -> I e. ZZ ) |
| 18 |
17
|
zred |
|- ( I e. ( 0 ..^ M ) -> I e. RR ) |
| 19 |
|
lelttric |
|- ( ( x e. RR /\ I e. RR ) -> ( x <_ I \/ I < x ) ) |
| 20 |
16 18 19
|
syl2an |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x <_ I \/ I < x ) ) |
| 21 |
|
breq2 |
|- ( ( P ` x ) = X -> ( ( P ` I ) < ( P ` x ) <-> ( P ` I ) < X ) ) |
| 22 |
|
breq1 |
|- ( ( P ` x ) = X -> ( ( P ` x ) < ( P ` ( I + 1 ) ) <-> X < ( P ` ( I + 1 ) ) ) ) |
| 23 |
21 22
|
anbi12d |
|- ( ( P ` x ) = X -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) <-> ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) ) |
| 24 |
|
leloe |
|- ( ( x e. RR /\ I e. RR ) -> ( x <_ I <-> ( x < I \/ x = I ) ) ) |
| 25 |
16 18 24
|
syl2an |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x <_ I <-> ( x < I \/ x = I ) ) ) |
| 26 |
1 2
|
iccpartgt |
|- ( ph -> A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) ) |
| 28 |
27
|
adantr |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) ) |
| 29 |
|
simpr |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> x e. ( 0 ... M ) ) |
| 30 |
|
elfzofz |
|- ( I e. ( 0 ..^ M ) -> I e. ( 0 ... M ) ) |
| 31 |
|
breq1 |
|- ( i = x -> ( i < k <-> x < k ) ) |
| 32 |
|
fveq2 |
|- ( i = x -> ( P ` i ) = ( P ` x ) ) |
| 33 |
32
|
breq1d |
|- ( i = x -> ( ( P ` i ) < ( P ` k ) <-> ( P ` x ) < ( P ` k ) ) ) |
| 34 |
31 33
|
imbi12d |
|- ( i = x -> ( ( i < k -> ( P ` i ) < ( P ` k ) ) <-> ( x < k -> ( P ` x ) < ( P ` k ) ) ) ) |
| 35 |
|
breq2 |
|- ( k = I -> ( x < k <-> x < I ) ) |
| 36 |
|
fveq2 |
|- ( k = I -> ( P ` k ) = ( P ` I ) ) |
| 37 |
36
|
breq2d |
|- ( k = I -> ( ( P ` x ) < ( P ` k ) <-> ( P ` x ) < ( P ` I ) ) ) |
| 38 |
35 37
|
imbi12d |
|- ( k = I -> ( ( x < k -> ( P ` x ) < ( P ` k ) ) <-> ( x < I -> ( P ` x ) < ( P ` I ) ) ) ) |
| 39 |
34 38
|
rspc2v |
|- ( ( x e. ( 0 ... M ) /\ I e. ( 0 ... M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( x < I -> ( P ` x ) < ( P ` I ) ) ) ) |
| 40 |
29 30 39
|
syl2an |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( x < I -> ( P ` x ) < ( P ` I ) ) ) ) |
| 41 |
28 40
|
mpd |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x < I -> ( P ` x ) < ( P ` I ) ) ) |
| 42 |
|
pm3.35 |
|- ( ( x < I /\ ( x < I -> ( P ` x ) < ( P ` I ) ) ) -> ( P ` x ) < ( P ` I ) ) |
| 43 |
1
|
adantr |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> M e. NN ) |
| 44 |
2
|
adantr |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> P e. ( RePart ` M ) ) |
| 45 |
43 44 29
|
iccpartxr |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> ( P ` x ) e. RR* ) |
| 46 |
45
|
adantr |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( P ` x ) e. RR* ) |
| 47 |
|
simp1 |
|- ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( P ` I ) e. RR* ) |
| 48 |
|
xrltle |
|- ( ( ( P ` x ) e. RR* /\ ( P ` I ) e. RR* ) -> ( ( P ` x ) < ( P ` I ) -> ( P ` x ) <_ ( P ` I ) ) ) |
| 49 |
46 47 48
|
syl2anr |
|- ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( P ` x ) < ( P ` I ) -> ( P ` x ) <_ ( P ` I ) ) ) |
| 50 |
|
xrlenlt |
|- ( ( ( P ` x ) e. RR* /\ ( P ` I ) e. RR* ) -> ( ( P ` x ) <_ ( P ` I ) <-> -. ( P ` I ) < ( P ` x ) ) ) |
| 51 |
46 47 50
|
syl2anr |
|- ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( P ` x ) <_ ( P ` I ) <-> -. ( P ` I ) < ( P ` x ) ) ) |
| 52 |
49 51
|
sylibd |
|- ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( P ` x ) < ( P ` I ) -> -. ( P ` I ) < ( P ` x ) ) ) |
| 53 |
52
|
ex |
|- ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) < ( P ` I ) -> -. ( P ` I ) < ( P ` x ) ) ) ) |
| 54 |
53
|
com13 |
|- ( ( P ` x ) < ( P ` I ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` I ) < ( P ` x ) ) ) ) |
| 55 |
54
|
imp |
|- ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` I ) < ( P ` x ) ) ) |
| 56 |
55
|
imp |
|- ( ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> -. ( P ` I ) < ( P ` x ) ) |
| 57 |
56
|
pm2.21d |
|- ( ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 58 |
57
|
ex |
|- ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) |
| 59 |
58
|
ex |
|- ( ( P ` x ) < ( P ` I ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 60 |
42 59
|
syl |
|- ( ( x < I /\ ( x < I -> ( P ` x ) < ( P ` I ) ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 61 |
60
|
ex |
|- ( x < I -> ( ( x < I -> ( P ` x ) < ( P ` I ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 62 |
61
|
com13 |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( x < I -> ( P ` x ) < ( P ` I ) ) -> ( x < I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 63 |
41 62
|
mpd |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x < I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 64 |
63
|
com12 |
|- ( x < I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 65 |
|
fveq2 |
|- ( x = I -> ( P ` x ) = ( P ` I ) ) |
| 66 |
65
|
breq2d |
|- ( x = I -> ( ( P ` I ) < ( P ` x ) <-> ( P ` I ) < ( P ` I ) ) ) |
| 67 |
66
|
adantr |
|- ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` x ) <-> ( P ` I ) < ( P ` I ) ) ) |
| 68 |
|
xrltnr |
|- ( ( P ` I ) e. RR* -> -. ( P ` I ) < ( P ` I ) ) |
| 69 |
68
|
3ad2ant1 |
|- ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` I ) < ( P ` I ) ) |
| 70 |
69
|
adantl |
|- ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> -. ( P ` I ) < ( P ` I ) ) |
| 71 |
70
|
pm2.21d |
|- ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` I ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 72 |
67 71
|
sylbid |
|- ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 73 |
72
|
ex |
|- ( x = I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) |
| 74 |
73
|
a1d |
|- ( x = I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 75 |
64 74
|
jaoi |
|- ( ( x < I \/ x = I ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 76 |
75
|
com12 |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( x < I \/ x = I ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 77 |
25 76
|
sylbid |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x <_ I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 78 |
77
|
com23 |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 79 |
78
|
com14 |
|- ( ( P ` I ) < ( P ` x ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 80 |
79
|
adantr |
|- ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 81 |
23 80
|
biimtrrdi |
|- ( ( P ` x ) = X -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 82 |
81
|
com14 |
|- ( x <_ I -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 83 |
82
|
com23 |
|- ( x <_ I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 84 |
83
|
impd |
|- ( x <_ I -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 85 |
84
|
com24 |
|- ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 86 |
14
|
adantl |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> x e. ZZ ) |
| 87 |
|
zltp1le |
|- ( ( I e. ZZ /\ x e. ZZ ) -> ( I < x <-> ( I + 1 ) <_ x ) ) |
| 88 |
17 86 87
|
syl2anr |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( I < x <-> ( I + 1 ) <_ x ) ) |
| 89 |
17
|
peano2zd |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ZZ ) |
| 90 |
89
|
zred |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. RR ) |
| 91 |
|
leloe |
|- ( ( ( I + 1 ) e. RR /\ x e. RR ) -> ( ( I + 1 ) <_ x <-> ( ( I + 1 ) < x \/ ( I + 1 ) = x ) ) ) |
| 92 |
90 16 91
|
syl2anr |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( I + 1 ) <_ x <-> ( ( I + 1 ) < x \/ ( I + 1 ) = x ) ) ) |
| 93 |
88 92
|
bitrd |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( I < x <-> ( ( I + 1 ) < x \/ ( I + 1 ) = x ) ) ) |
| 94 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 95 |
|
breq1 |
|- ( i = ( I + 1 ) -> ( i < k <-> ( I + 1 ) < k ) ) |
| 96 |
|
fveq2 |
|- ( i = ( I + 1 ) -> ( P ` i ) = ( P ` ( I + 1 ) ) ) |
| 97 |
96
|
breq1d |
|- ( i = ( I + 1 ) -> ( ( P ` i ) < ( P ` k ) <-> ( P ` ( I + 1 ) ) < ( P ` k ) ) ) |
| 98 |
95 97
|
imbi12d |
|- ( i = ( I + 1 ) -> ( ( i < k -> ( P ` i ) < ( P ` k ) ) <-> ( ( I + 1 ) < k -> ( P ` ( I + 1 ) ) < ( P ` k ) ) ) ) |
| 99 |
|
breq2 |
|- ( k = x -> ( ( I + 1 ) < k <-> ( I + 1 ) < x ) ) |
| 100 |
|
fveq2 |
|- ( k = x -> ( P ` k ) = ( P ` x ) ) |
| 101 |
100
|
breq2d |
|- ( k = x -> ( ( P ` ( I + 1 ) ) < ( P ` k ) <-> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) |
| 102 |
99 101
|
imbi12d |
|- ( k = x -> ( ( ( I + 1 ) < k -> ( P ` ( I + 1 ) ) < ( P ` k ) ) <-> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) ) |
| 103 |
98 102
|
rspc2v |
|- ( ( ( I + 1 ) e. ( 0 ... M ) /\ x e. ( 0 ... M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) ) |
| 104 |
94 29 103
|
syl2anr |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) ) |
| 105 |
28 104
|
mpd |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) |
| 106 |
|
pm3.35 |
|- ( ( ( I + 1 ) < x /\ ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) -> ( P ` ( I + 1 ) ) < ( P ` x ) ) |
| 107 |
|
simp2 |
|- ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( P ` ( I + 1 ) ) e. RR* ) |
| 108 |
|
xrltnsym |
|- ( ( ( P ` x ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* ) -> ( ( P ` x ) < ( P ` ( I + 1 ) ) -> -. ( P ` ( I + 1 ) ) < ( P ` x ) ) ) |
| 109 |
46 107 108
|
syl2an |
|- ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` x ) < ( P ` ( I + 1 ) ) -> -. ( P ` ( I + 1 ) ) < ( P ` x ) ) ) |
| 110 |
109
|
imp |
|- ( ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. ( P ` ( I + 1 ) ) < ( P ` x ) ) |
| 111 |
110
|
pm2.21d |
|- ( ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 112 |
111
|
expcom |
|- ( ( P ` x ) < ( P ` ( I + 1 ) ) -> ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) |
| 113 |
112
|
expd |
|- ( ( P ` x ) < ( P ` ( I + 1 ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 114 |
113
|
adantl |
|- ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 115 |
114
|
com14 |
|- ( ( P ` ( I + 1 ) ) < ( P ` x ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 116 |
106 115
|
syl |
|- ( ( ( I + 1 ) < x /\ ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 117 |
116
|
ex |
|- ( ( I + 1 ) < x -> ( ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 118 |
117
|
com13 |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) -> ( ( I + 1 ) < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 119 |
105 118
|
mpd |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( I + 1 ) < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 120 |
119
|
com12 |
|- ( ( I + 1 ) < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 121 |
|
fveq2 |
|- ( ( I + 1 ) = x -> ( P ` ( I + 1 ) ) = ( P ` x ) ) |
| 122 |
121
|
breq2d |
|- ( ( I + 1 ) = x -> ( ( P ` I ) < ( P ` ( I + 1 ) ) <-> ( P ` I ) < ( P ` x ) ) ) |
| 123 |
121
|
breq1d |
|- ( ( I + 1 ) = x -> ( ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) <-> ( P ` x ) < ( P ` ( I + 1 ) ) ) ) |
| 124 |
122 123
|
anbi12d |
|- ( ( I + 1 ) = x -> ( ( ( P ` I ) < ( P ` ( I + 1 ) ) /\ ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) <-> ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) ) ) |
| 125 |
|
xrltnr |
|- ( ( P ` ( I + 1 ) ) e. RR* -> -. ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) |
| 126 |
125
|
3ad2ant2 |
|- ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) |
| 127 |
126
|
pm2.21d |
|- ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 128 |
127
|
com12 |
|- ( ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 129 |
128
|
adantl |
|- ( ( ( P ` I ) < ( P ` ( I + 1 ) ) /\ ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 130 |
124 129
|
biimtrrdi |
|- ( ( I + 1 ) = x -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) |
| 131 |
130
|
com23 |
|- ( ( I + 1 ) = x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) |
| 132 |
131
|
a1d |
|- ( ( I + 1 ) = x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 133 |
120 132
|
jaoi |
|- ( ( ( I + 1 ) < x \/ ( I + 1 ) = x ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 134 |
133
|
com12 |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( I + 1 ) < x \/ ( I + 1 ) = x ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 135 |
93 134
|
sylbid |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( I < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 136 |
135
|
com23 |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( I < x -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 137 |
136
|
com14 |
|- ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( I < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 138 |
23 137
|
biimtrrdi |
|- ( ( P ` x ) = X -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( I < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 139 |
138
|
com14 |
|- ( I < x -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 140 |
139
|
com23 |
|- ( I < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) |
| 141 |
140
|
impd |
|- ( I < x -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 142 |
141
|
com24 |
|- ( I < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 143 |
85 142
|
jaoi |
|- ( ( x <_ I \/ I < x ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 144 |
143
|
com12 |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( x <_ I \/ I < x ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 145 |
20 144
|
mpd |
|- ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) |
| 146 |
145
|
ex |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> ( I e. ( 0 ..^ M ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 147 |
146
|
com23 |
|- ( ( ph /\ x e. ( 0 ... M ) ) -> ( ( P ` x ) = X -> ( I e. ( 0 ..^ M ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 148 |
147
|
rexlimdva |
|- ( ph -> ( E. x e. ( 0 ... M ) ( P ` x ) = X -> ( I e. ( 0 ..^ M ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) |
| 149 |
13 148
|
mpd |
|- ( ph -> ( I e. ( 0 ..^ M ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) |
| 150 |
149
|
imp |
|- ( ( ph /\ I e. ( 0 ..^ M ) ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 151 |
150
|
com12 |
|- ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 152 |
4 151
|
sylbi |
|- ( X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) -> ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 153 |
|
ax-1 |
|- ( -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) -> ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) |
| 154 |
152 153
|
pm2.61i |
|- ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) |