Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
3 |
|
iccpart |
|- ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) |
4 |
1 3
|
syl |
|- ( ph -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) |
5 |
|
elmapfn |
|- ( P e. ( RR* ^m ( 0 ... M ) ) -> P Fn ( 0 ... M ) ) |
6 |
5
|
adantr |
|- ( ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) -> P Fn ( 0 ... M ) ) |
7 |
4 6
|
syl6bi |
|- ( ph -> ( P e. ( RePart ` M ) -> P Fn ( 0 ... M ) ) ) |
8 |
2 7
|
mpd |
|- ( ph -> P Fn ( 0 ... M ) ) |
9 |
|
fvelrnb |
|- ( P Fn ( 0 ... M ) -> ( p e. ran P <-> E. i e. ( 0 ... M ) ( P ` i ) = p ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( p e. ran P <-> E. i e. ( 0 ... M ) ( P ` i ) = p ) ) |
11 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> M e. NN ) |
12 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> P e. ( RePart ` M ) ) |
13 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) |
14 |
11 12 13
|
iccpartxr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` i ) e. RR* ) |
15 |
1 2
|
iccpartgel |
|- ( ph -> A. k e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` k ) ) |
16 |
|
fveq2 |
|- ( k = i -> ( P ` k ) = ( P ` i ) ) |
17 |
16
|
breq2d |
|- ( k = i -> ( ( P ` 0 ) <_ ( P ` k ) <-> ( P ` 0 ) <_ ( P ` i ) ) ) |
18 |
17
|
rspcva |
|- ( ( i e. ( 0 ... M ) /\ A. k e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` k ) ) -> ( P ` 0 ) <_ ( P ` i ) ) |
19 |
18
|
expcom |
|- ( A. k e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` k ) -> ( i e. ( 0 ... M ) -> ( P ` 0 ) <_ ( P ` i ) ) ) |
20 |
15 19
|
syl |
|- ( ph -> ( i e. ( 0 ... M ) -> ( P ` 0 ) <_ ( P ` i ) ) ) |
21 |
20
|
imp |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` 0 ) <_ ( P ` i ) ) |
22 |
1 2
|
iccpartleu |
|- ( ph -> A. k e. ( 0 ... M ) ( P ` k ) <_ ( P ` M ) ) |
23 |
16
|
breq1d |
|- ( k = i -> ( ( P ` k ) <_ ( P ` M ) <-> ( P ` i ) <_ ( P ` M ) ) ) |
24 |
23
|
rspcva |
|- ( ( i e. ( 0 ... M ) /\ A. k e. ( 0 ... M ) ( P ` k ) <_ ( P ` M ) ) -> ( P ` i ) <_ ( P ` M ) ) |
25 |
24
|
expcom |
|- ( A. k e. ( 0 ... M ) ( P ` k ) <_ ( P ` M ) -> ( i e. ( 0 ... M ) -> ( P ` i ) <_ ( P ` M ) ) ) |
26 |
22 25
|
syl |
|- ( ph -> ( i e. ( 0 ... M ) -> ( P ` i ) <_ ( P ` M ) ) ) |
27 |
26
|
imp |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` i ) <_ ( P ` M ) ) |
28 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
29 |
|
0elfz |
|- ( M e. NN0 -> 0 e. ( 0 ... M ) ) |
30 |
1 28 29
|
3syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
31 |
1 2 30
|
iccpartxr |
|- ( ph -> ( P ` 0 ) e. RR* ) |
32 |
|
nn0fz0 |
|- ( M e. NN0 <-> M e. ( 0 ... M ) ) |
33 |
28 32
|
sylib |
|- ( M e. NN -> M e. ( 0 ... M ) ) |
34 |
1 33
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
35 |
1 2 34
|
iccpartxr |
|- ( ph -> ( P ` M ) e. RR* ) |
36 |
31 35
|
jca |
|- ( ph -> ( ( P ` 0 ) e. RR* /\ ( P ` M ) e. RR* ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( P ` 0 ) e. RR* /\ ( P ` M ) e. RR* ) ) |
38 |
|
elicc1 |
|- ( ( ( P ` 0 ) e. RR* /\ ( P ` M ) e. RR* ) -> ( ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) <-> ( ( P ` i ) e. RR* /\ ( P ` 0 ) <_ ( P ` i ) /\ ( P ` i ) <_ ( P ` M ) ) ) ) |
39 |
37 38
|
syl |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) <-> ( ( P ` i ) e. RR* /\ ( P ` 0 ) <_ ( P ` i ) /\ ( P ` i ) <_ ( P ` M ) ) ) ) |
40 |
14 21 27 39
|
mpbir3and |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) ) |
41 |
|
eleq1 |
|- ( ( P ` i ) = p -> ( ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) <-> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) |
42 |
40 41
|
syl5ibcom |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( P ` i ) = p -> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) |
43 |
42
|
rexlimdva |
|- ( ph -> ( E. i e. ( 0 ... M ) ( P ` i ) = p -> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) |
44 |
10 43
|
sylbid |
|- ( ph -> ( p e. ran P -> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) |
45 |
44
|
ssrdv |
|- ( ph -> ran P C_ ( ( P ` 0 ) [,] ( P ` M ) ) ) |