| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
| 2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
| 3 |
|
iccpartxr.i |
|- ( ph -> I e. ( 0 ... M ) ) |
| 4 |
|
iccpart |
|- ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) |
| 6 |
2 5
|
mpbid |
|- ( ph -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) |
| 7 |
6
|
simpld |
|- ( ph -> P e. ( RR* ^m ( 0 ... M ) ) ) |
| 8 |
|
elmapi |
|- ( P e. ( RR* ^m ( 0 ... M ) ) -> P : ( 0 ... M ) --> RR* ) |
| 9 |
7 8
|
syl |
|- ( ph -> P : ( 0 ... M ) --> RR* ) |
| 10 |
9 3
|
ffvelcdmd |
|- ( ph -> ( P ` I ) e. RR* ) |