| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iccpnfhmeo.f | 
							 |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							0xr | 
							 |-  0 e. RR*  | 
						
						
							| 3 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 4 | 
							
								
							 | 
							0lepnf | 
							 |-  0 <_ +oo  | 
						
						
							| 5 | 
							
								
							 | 
							ubicc2 | 
							 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) )  | 
						
						
							| 6 | 
							
								2 3 4 5
							 | 
							mp3an | 
							 |-  +oo e. ( 0 [,] +oo )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ x = 1 ) -> +oo e. ( 0 [,] +oo ) )  | 
						
						
							| 8 | 
							
								
							 | 
							icossicc | 
							 |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo )  | 
						
						
							| 9 | 
							
								
							 | 
							1xr | 
							 |-  1 e. RR*  | 
						
						
							| 10 | 
							
								
							 | 
							0le1 | 
							 |-  0 <_ 1  | 
						
						
							| 11 | 
							
								
							 | 
							snunico | 
							 |-  ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) ) | 
						
						
							| 12 | 
							
								2 9 10 11
							 | 
							mp3an | 
							 |-  ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) | 
						
						
							| 13 | 
							
								12
							 | 
							eleq2i | 
							 |-  ( x e. ( ( 0 [,) 1 ) u. { 1 } ) <-> x e. ( 0 [,] 1 ) ) | 
						
						
							| 14 | 
							
								
							 | 
							elun | 
							 |-  ( x e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) ) | 
						
						
							| 15 | 
							
								13 14
							 | 
							bitr3i | 
							 |-  ( x e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) ) | 
						
						
							| 16 | 
							
								
							 | 
							pm2.53 | 
							 |-  ( ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) -> ( -. x e. ( 0 [,) 1 ) -> x e. { 1 } ) ) | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylbi | 
							 |-  ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 [,) 1 ) -> x e. { 1 } ) ) | 
						
						
							| 18 | 
							
								
							 | 
							elsni | 
							 |-  ( x e. { 1 } -> x = 1 ) | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl6 | 
							 |-  ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 [,) 1 ) -> x = 1 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							con1d | 
							 |-  ( x e. ( 0 [,] 1 ) -> ( -. x = 1 -> x e. ( 0 [,) 1 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imp | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> x e. ( 0 [,) 1 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							icopnfcnv | 
							 |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simpli | 
							 |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  | 
						
						
							| 25 | 
							
								
							 | 
							f1of | 
							 |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) -> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							ax-mp | 
							 |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo )  | 
						
						
							| 27 | 
							
								22
							 | 
							fmpt | 
							 |-  ( A. x e. ( 0 [,) 1 ) ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) <-> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mpbir | 
							 |-  A. x e. ( 0 [,) 1 ) ( x / ( 1 - x ) ) e. ( 0 [,) +oo )  | 
						
						
							| 29 | 
							
								28
							 | 
							rspec | 
							 |-  ( x e. ( 0 [,) 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) )  | 
						
						
							| 30 | 
							
								21 29
							 | 
							syl | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							sselid | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,] +oo ) )  | 
						
						
							| 32 | 
							
								7 31
							 | 
							ifclda | 
							 |-  ( x e. ( 0 [,] 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. ( 0 [,] +oo ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantl | 
							 |-  ( ( T. /\ x e. ( 0 [,] 1 ) ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. ( 0 [,] +oo ) )  | 
						
						
							| 34 | 
							
								
							 | 
							1elunit | 
							 |-  1 e. ( 0 [,] 1 )  | 
						
						
							| 35 | 
							
								34
							 | 
							a1i | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ y = +oo ) -> 1 e. ( 0 [,] 1 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							icossicc | 
							 |-  ( 0 [,) 1 ) C_ ( 0 [,] 1 )  | 
						
						
							| 37 | 
							
								
							 | 
							snunico | 
							 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) ) | 
						
						
							| 38 | 
							
								2 3 4 37
							 | 
							mp3an | 
							 |-  ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) | 
						
						
							| 39 | 
							
								38
							 | 
							eleq2i | 
							 |-  ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> y e. ( 0 [,] +oo ) ) | 
						
						
							| 40 | 
							
								
							 | 
							elun | 
							 |-  ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) | 
						
						
							| 41 | 
							
								39 40
							 | 
							bitr3i | 
							 |-  ( y e. ( 0 [,] +oo ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) | 
						
						
							| 42 | 
							
								
							 | 
							pm2.53 | 
							 |-  ( ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) | 
						
						
							| 43 | 
							
								41 42
							 | 
							sylbi | 
							 |-  ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) | 
						
						
							| 44 | 
							
								
							 | 
							elsni | 
							 |-  ( y e. { +oo } -> y = +oo ) | 
						
						
							| 45 | 
							
								43 44
							 | 
							syl6 | 
							 |-  ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y = +oo ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							con1d | 
							 |-  ( y e. ( 0 [,] +oo ) -> ( -. y = +oo -> y e. ( 0 [,) +oo ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							imp | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> y e. ( 0 [,) +oo ) )  | 
						
						
							| 48 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) -> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) -1-1-onto-> ( 0 [,) 1 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							f1of | 
							 |-  ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) -1-1-onto-> ( 0 [,) 1 ) -> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) )  | 
						
						
							| 50 | 
							
								24 48 49
							 | 
							mp2b | 
							 |-  `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 )  | 
						
						
							| 51 | 
							
								23
							 | 
							simpri | 
							 |-  `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							fmpt | 
							 |-  ( A. y e. ( 0 [,) +oo ) ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) )  | 
						
						
							| 53 | 
							
								50 52
							 | 
							mpbir | 
							 |-  A. y e. ( 0 [,) +oo ) ( y / ( 1 + y ) ) e. ( 0 [,) 1 )  | 
						
						
							| 54 | 
							
								53
							 | 
							rspec | 
							 |-  ( y e. ( 0 [,) +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) )  | 
						
						
							| 55 | 
							
								47 54
							 | 
							syl | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) )  | 
						
						
							| 56 | 
							
								36 55
							 | 
							sselid | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,] 1 ) )  | 
						
						
							| 57 | 
							
								35 56
							 | 
							ifclda | 
							 |-  ( y e. ( 0 [,] +oo ) -> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) e. ( 0 [,] 1 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantl | 
							 |-  ( ( T. /\ y e. ( 0 [,] +oo ) ) -> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) e. ( 0 [,] 1 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( 1 = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( x = 1 <-> x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							bibi1d | 
							 |-  ( 1 = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( ( x = 1 <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) <-> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( ( y / ( 1 + y ) ) = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( x = ( y / ( 1 + y ) ) <-> x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							bibi1d | 
							 |-  ( ( y / ( 1 + y ) ) = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) <-> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y = +oo )  | 
						
						
							| 64 | 
							
								
							 | 
							iftrue | 
							 |-  ( x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = +oo )  | 
						
						
							| 65 | 
							
								64
							 | 
							eqeq2d | 
							 |-  ( x = 1 -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) <-> y = +oo ) )  | 
						
						
							| 66 | 
							
								63 65
							 | 
							syl5ibrcom | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 1 -> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							pnfnre | 
							 |-  +oo e/ RR  | 
						
						
							| 68 | 
							
								
							 | 
							neleq1 | 
							 |-  ( y = +oo -> ( y e/ RR <-> +oo e/ RR ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantl | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y e/ RR <-> +oo e/ RR ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							mpbiri | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y e/ RR )  | 
						
						
							| 71 | 
							
								
							 | 
							neleq1 | 
							 |-  ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y e/ RR <-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							syl5ibcom | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR ) )  | 
						
						
							| 73 | 
							
								
							 | 
							df-nel | 
							 |-  ( if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR <-> -. if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR )  | 
						
						
							| 74 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantl | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) )  | 
						
						
							| 76 | 
							
								
							 | 
							rge0ssre | 
							 |-  ( 0 [,) +oo ) C_ RR  | 
						
						
							| 77 | 
							
								76 30
							 | 
							sselid | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. RR )  | 
						
						
							| 78 | 
							
								75 77
							 | 
							eqeltrd | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR )  | 
						
						
							| 79 | 
							
								78
							 | 
							ex | 
							 |-  ( x e. ( 0 [,] 1 ) -> ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							ad2antrr | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							con1d | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR -> x = 1 ) )  | 
						
						
							| 82 | 
							
								73 81
							 | 
							biimtrid | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR -> x = 1 ) )  | 
						
						
							| 83 | 
							
								72 82
							 | 
							syld | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> x = 1 ) )  | 
						
						
							| 84 | 
							
								66 83
							 | 
							impbid | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 1 <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( +oo = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y = +oo <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							bibi2d | 
							 |-  ( +oo = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = +oo ) <-> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( ( x / ( 1 - x ) ) = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y = ( x / ( 1 - x ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							bibi2d | 
							 |-  ( ( x / ( 1 - x ) ) = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) <-> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 90 | 
							
								
							 | 
							elico2 | 
							 |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) ) )  | 
						
						
							| 91 | 
							
								89 9 90
							 | 
							mp2an | 
							 |-  ( ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) )  | 
						
						
							| 92 | 
							
								55 91
							 | 
							sylib | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							simp1d | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. RR )  | 
						
						
							| 94 | 
							
								92
							 | 
							simp3d | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) < 1 )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							gtned | 
							 |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> 1 =/= ( y / ( 1 + y ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							adantll | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> 1 =/= ( y / ( 1 + y ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							neneqd | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> -. 1 = ( y / ( 1 + y ) ) )  | 
						
						
							| 98 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = 1 -> ( x = ( y / ( 1 + y ) ) <-> 1 = ( y / ( 1 + y ) ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							notbid | 
							 |-  ( x = 1 -> ( -. x = ( y / ( 1 + y ) ) <-> -. 1 = ( y / ( 1 + y ) ) ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							syl5ibrcom | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = 1 -> -. x = ( y / ( 1 + y ) ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							imp | 
							 |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> -. x = ( y / ( 1 + y ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> -. y = +oo )  | 
						
						
							| 103 | 
							
								101 102
							 | 
							2falsed | 
							 |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> ( x = ( y / ( 1 + y ) ) <-> y = +oo ) )  | 
						
						
							| 104 | 
							
								
							 | 
							f1ocnvfvb | 
							 |-  ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x ) )  | 
						
						
							| 105 | 
							
								24 104
							 | 
							mp3an1 | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x ) )  | 
						
						
							| 106 | 
							
								
							 | 
							simpl | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> x e. ( 0 [,) 1 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							ovex | 
							 |-  ( x / ( 1 - x ) ) e. _V  | 
						
						
							| 108 | 
							
								22
							 | 
							fvmpt2 | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ ( x / ( 1 - x ) ) e. _V ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = ( x / ( 1 - x ) ) )  | 
						
						
							| 109 | 
							
								106 107 108
							 | 
							sylancl | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = ( x / ( 1 - x ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							eqeq1d | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( x / ( 1 - x ) ) = y ) )  | 
						
						
							| 111 | 
							
								
							 | 
							simpr | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> y e. ( 0 [,) +oo ) )  | 
						
						
							| 112 | 
							
								
							 | 
							ovex | 
							 |-  ( y / ( 1 + y ) ) e. _V  | 
						
						
							| 113 | 
							
								51
							 | 
							fvmpt2 | 
							 |-  ( ( y e. ( 0 [,) +oo ) /\ ( y / ( 1 + y ) ) e. _V ) -> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = ( y / ( 1 + y ) ) )  | 
						
						
							| 114 | 
							
								111 112 113
							 | 
							sylancl | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = ( y / ( 1 + y ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							eqeq1d | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x <-> ( y / ( 1 + y ) ) = x ) )  | 
						
						
							| 116 | 
							
								105 110 115
							 | 
							3bitr3rd | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( y / ( 1 + y ) ) = x <-> ( x / ( 1 - x ) ) = y ) )  | 
						
						
							| 117 | 
							
								
							 | 
							eqcom | 
							 |-  ( x = ( y / ( 1 + y ) ) <-> ( y / ( 1 + y ) ) = x )  | 
						
						
							| 118 | 
							
								
							 | 
							eqcom | 
							 |-  ( y = ( x / ( 1 - x ) ) <-> ( x / ( 1 - x ) ) = y )  | 
						
						
							| 119 | 
							
								116 117 118
							 | 
							3bitr4g | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) )  | 
						
						
							| 120 | 
							
								21 47 119
							 | 
							syl2an | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) /\ ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							an4s | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ ( -. x = 1 /\ -. y = +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							anass1rs | 
							 |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ -. x = 1 ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) )  | 
						
						
							| 123 | 
							
								86 88 103 122
							 | 
							ifbothda | 
							 |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) )  | 
						
						
							| 124 | 
							
								60 62 84 123
							 | 
							ifbothda | 
							 |-  ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) -> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							adantl | 
							 |-  ( ( T. /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) ) -> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) )  | 
						
						
							| 126 | 
							
								1 33 58 125
							 | 
							f1ocnv2d | 
							 |-  ( T. -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							mptru | 
							 |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) )  |