Step |
Hyp |
Ref |
Expression |
1 |
|
iccpnfhmeo.f |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
2 |
|
iccpnfhmeo.k |
|- K = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
3 |
|
iccssxr |
|- ( 0 [,] 1 ) C_ RR* |
4 |
|
xrltso |
|- < Or RR* |
5 |
|
soss |
|- ( ( 0 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] 1 ) ) ) |
6 |
3 4 5
|
mp2 |
|- < Or ( 0 [,] 1 ) |
7 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
8 |
|
soss |
|- ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) |
9 |
7 4 8
|
mp2 |
|- < Or ( 0 [,] +oo ) |
10 |
|
sopo |
|- ( < Or ( 0 [,] +oo ) -> < Po ( 0 [,] +oo ) ) |
11 |
9 10
|
ax-mp |
|- < Po ( 0 [,] +oo ) |
12 |
1
|
iccpnfcnv |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) |
13 |
12
|
simpli |
|- F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) |
14 |
|
f1ofo |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) ) |
15 |
13 14
|
ax-mp |
|- F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) |
16 |
|
elicc01 |
|- ( z e. ( 0 [,] 1 ) <-> ( z e. RR /\ 0 <_ z /\ z <_ 1 ) ) |
17 |
16
|
simp1bi |
|- ( z e. ( 0 [,] 1 ) -> z e. RR ) |
18 |
17
|
3ad2ant1 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. RR ) |
19 |
|
elicc01 |
|- ( w e. ( 0 [,] 1 ) <-> ( w e. RR /\ 0 <_ w /\ w <_ 1 ) ) |
20 |
19
|
simp1bi |
|- ( w e. ( 0 [,] 1 ) -> w e. RR ) |
21 |
20
|
3ad2ant2 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. RR ) |
22 |
|
1red |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 e. RR ) |
23 |
|
simp3 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < w ) |
24 |
19
|
simp3bi |
|- ( w e. ( 0 [,] 1 ) -> w <_ 1 ) |
25 |
24
|
3ad2ant2 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w <_ 1 ) |
26 |
18 21 22 23 25
|
ltletrd |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < 1 ) |
27 |
18 26
|
gtned |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 =/= z ) |
28 |
27
|
necomd |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z =/= 1 ) |
29 |
|
ifnefalse |
|- ( z =/= 1 -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) ) |
30 |
28 29
|
syl |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) ) |
31 |
|
breq2 |
|- ( +oo = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < +oo <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
32 |
|
breq2 |
|- ( ( w / ( 1 - w ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
33 |
|
1re |
|- 1 e. RR |
34 |
|
resubcl |
|- ( ( 1 e. RR /\ z e. RR ) -> ( 1 - z ) e. RR ) |
35 |
33 18 34
|
sylancr |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) e. RR ) |
36 |
|
ax-1cn |
|- 1 e. CC |
37 |
18
|
recnd |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. CC ) |
38 |
|
subeq0 |
|- ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) = 0 <-> 1 = z ) ) |
39 |
38
|
necon3bid |
|- ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) |
40 |
36 37 39
|
sylancr |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) |
41 |
27 40
|
mpbird |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) =/= 0 ) |
42 |
18 35 41
|
redivcld |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) e. RR ) |
43 |
42
|
ltpnfd |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < +oo ) |
44 |
43
|
adantr |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ w = 1 ) -> ( z / ( 1 - z ) ) < +oo ) |
45 |
|
simpl3 |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z < w ) |
46 |
|
eqid |
|- ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) |
47 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
48 |
46 47
|
icopnfhmeo |
|- ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) 1 ) ) Homeo ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ) |
49 |
48
|
simpli |
|- ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
50 |
49
|
a1i |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
51 |
|
simp1 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,] 1 ) ) |
52 |
|
0xr |
|- 0 e. RR* |
53 |
|
1xr |
|- 1 e. RR* |
54 |
|
0le1 |
|- 0 <_ 1 |
55 |
|
snunico |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) ) |
56 |
52 53 54 55
|
mp3an |
|- ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) |
57 |
51 56
|
eleqtrrdi |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( ( 0 [,) 1 ) u. { 1 } ) ) |
58 |
|
elun |
|- ( z e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) |
59 |
57 58
|
sylib |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) |
60 |
59
|
ord |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z e. { 1 } ) ) |
61 |
|
elsni |
|- ( z e. { 1 } -> z = 1 ) |
62 |
60 61
|
syl6 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z = 1 ) ) |
63 |
62
|
necon1ad |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z =/= 1 -> z e. ( 0 [,) 1 ) ) ) |
64 |
28 63
|
mpd |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,) 1 ) ) |
65 |
64
|
adantr |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z e. ( 0 [,) 1 ) ) |
66 |
|
simp2 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( 0 [,] 1 ) ) |
67 |
66 56
|
eleqtrrdi |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( ( 0 [,) 1 ) u. { 1 } ) ) |
68 |
|
elun |
|- ( w e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) |
69 |
67 68
|
sylib |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) |
70 |
69
|
ord |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w e. { 1 } ) ) |
71 |
|
elsni |
|- ( w e. { 1 } -> w = 1 ) |
72 |
70 71
|
syl6 |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w = 1 ) ) |
73 |
72
|
con1d |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w = 1 -> w e. ( 0 [,) 1 ) ) ) |
74 |
73
|
imp |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> w e. ( 0 [,) 1 ) ) |
75 |
|
isorel |
|- ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) ) |
76 |
50 65 74 75
|
syl12anc |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) ) |
77 |
45 76
|
mpbid |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) |
78 |
|
id |
|- ( x = z -> x = z ) |
79 |
|
oveq2 |
|- ( x = z -> ( 1 - x ) = ( 1 - z ) ) |
80 |
78 79
|
oveq12d |
|- ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) ) |
81 |
|
ovex |
|- ( z / ( 1 - z ) ) e. _V |
82 |
80 46 81
|
fvmpt |
|- ( z e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) ) |
83 |
65 82
|
syl |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) ) |
84 |
|
id |
|- ( x = w -> x = w ) |
85 |
|
oveq2 |
|- ( x = w -> ( 1 - x ) = ( 1 - w ) ) |
86 |
84 85
|
oveq12d |
|- ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) ) |
87 |
|
ovex |
|- ( w / ( 1 - w ) ) e. _V |
88 |
86 46 87
|
fvmpt |
|- ( w e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) ) |
89 |
74 88
|
syl |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) ) |
90 |
77 83 89
|
3brtr3d |
|- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) |
91 |
31 32 44 90
|
ifbothda |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
92 |
30 91
|
eqbrtrd |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
93 |
92
|
3expia |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
94 |
|
eqeq1 |
|- ( x = z -> ( x = 1 <-> z = 1 ) ) |
95 |
94 80
|
ifbieq2d |
|- ( x = z -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) ) |
96 |
|
pnfex |
|- +oo e. _V |
97 |
96 81
|
ifex |
|- if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) e. _V |
98 |
95 1 97
|
fvmpt |
|- ( z e. ( 0 [,] 1 ) -> ( F ` z ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) ) |
99 |
|
eqeq1 |
|- ( x = w -> ( x = 1 <-> w = 1 ) ) |
100 |
99 86
|
ifbieq2d |
|- ( x = w -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
101 |
96 87
|
ifex |
|- if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) e. _V |
102 |
100 1 101
|
fvmpt |
|- ( w e. ( 0 [,] 1 ) -> ( F ` w ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
103 |
98 102
|
breqan12d |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
104 |
93 103
|
sylibrd |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> ( F ` z ) < ( F ` w ) ) ) |
105 |
104
|
rgen2 |
|- A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) ) |
106 |
|
soisoi |
|- ( ( ( < Or ( 0 [,] 1 ) /\ < Po ( 0 [,] +oo ) ) /\ ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) /\ A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) ) ) ) -> F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
107 |
6 11 15 105 106
|
mp4an |
|- F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
108 |
|
letsr |
|- <_ e. TosetRel |
109 |
108
|
elexi |
|- <_ e. _V |
110 |
109
|
inex1 |
|- ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V |
111 |
109
|
inex1 |
|- ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V |
112 |
|
leiso |
|- ( ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) ) |
113 |
3 7 112
|
mp2an |
|- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
114 |
107 113
|
mpbi |
|- F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
115 |
|
isores1 |
|- ( F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
116 |
114 115
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
117 |
|
isores2 |
|- ( F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
118 |
116 117
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
119 |
|
tsrps |
|- ( <_ e. TosetRel -> <_ e. PosetRel ) |
120 |
108 119
|
ax-mp |
|- <_ e. PosetRel |
121 |
|
ledm |
|- RR* = dom <_ |
122 |
121
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( 0 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) |
123 |
120 3 122
|
mp2an |
|- dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) |
124 |
123
|
eqcomi |
|- ( 0 [,] 1 ) = dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
125 |
121
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( 0 [,] +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) ) |
126 |
120 7 125
|
mp2an |
|- dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) |
127 |
126
|
eqcomi |
|- ( 0 [,] +oo ) = dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) |
128 |
124 127
|
ordthmeo |
|- ( ( ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) ) |
129 |
110 111 118 128
|
mp3an |
|- F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
130 |
|
dfii5 |
|- II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
131 |
|
ordtresticc |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
132 |
2 131
|
eqtri |
|- K = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
133 |
130 132
|
oveq12i |
|- ( II Homeo K ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
134 |
129 133
|
eleqtrri |
|- F e. ( II Homeo K ) |
135 |
107 134
|
pm3.2i |
|- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo K ) ) |