| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iccpnfhmeo.f | 
							 |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							iccpnfhmeo.k | 
							 |-  K = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )  | 
						
						
							| 3 | 
							
								
							 | 
							iccssxr | 
							 |-  ( 0 [,] 1 ) C_ RR*  | 
						
						
							| 4 | 
							
								
							 | 
							xrltso | 
							 |-  < Or RR*  | 
						
						
							| 5 | 
							
								
							 | 
							soss | 
							 |-  ( ( 0 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] 1 ) ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							mp2 | 
							 |-  < Or ( 0 [,] 1 )  | 
						
						
							| 7 | 
							
								
							 | 
							iccssxr | 
							 |-  ( 0 [,] +oo ) C_ RR*  | 
						
						
							| 8 | 
							
								
							 | 
							soss | 
							 |-  ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) )  | 
						
						
							| 9 | 
							
								7 4 8
							 | 
							mp2 | 
							 |-  < Or ( 0 [,] +oo )  | 
						
						
							| 10 | 
							
								
							 | 
							sopo | 
							 |-  ( < Or ( 0 [,] +oo ) -> < Po ( 0 [,] +oo ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							ax-mp | 
							 |-  < Po ( 0 [,] +oo )  | 
						
						
							| 12 | 
							
								1
							 | 
							iccpnfcnv | 
							 |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simpli | 
							 |-  F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  | 
						
						
							| 14 | 
							
								
							 | 
							f1ofo | 
							 |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							ax-mp | 
							 |-  F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo )  | 
						
						
							| 16 | 
							
								
							 | 
							elicc01 | 
							 |-  ( z e. ( 0 [,] 1 ) <-> ( z e. RR /\ 0 <_ z /\ z <_ 1 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simp1bi | 
							 |-  ( z e. ( 0 [,] 1 ) -> z e. RR )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant1 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. RR )  | 
						
						
							| 19 | 
							
								
							 | 
							elicc01 | 
							 |-  ( w e. ( 0 [,] 1 ) <-> ( w e. RR /\ 0 <_ w /\ w <_ 1 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simp1bi | 
							 |-  ( w e. ( 0 [,] 1 ) -> w e. RR )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant2 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. RR )  | 
						
						
							| 22 | 
							
								
							 | 
							1red | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 e. RR )  | 
						
						
							| 23 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < w )  | 
						
						
							| 24 | 
							
								19
							 | 
							simp3bi | 
							 |-  ( w e. ( 0 [,] 1 ) -> w <_ 1 )  | 
						
						
							| 25 | 
							
								24
							 | 
							3ad2ant2 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w <_ 1 )  | 
						
						
							| 26 | 
							
								18 21 22 23 25
							 | 
							ltletrd | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < 1 )  | 
						
						
							| 27 | 
							
								18 26
							 | 
							gtned | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 =/= z )  | 
						
						
							| 28 | 
							
								27
							 | 
							necomd | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z =/= 1 )  | 
						
						
							| 29 | 
							
								
							 | 
							ifnefalse | 
							 |-  ( z =/= 1 -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							breq2 | 
							 |-  ( +oo = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < +oo <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							breq2 | 
							 |-  ( ( w / ( 1 - w ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 34 | 
							
								
							 | 
							resubcl | 
							 |-  ( ( 1 e. RR /\ z e. RR ) -> ( 1 - z ) e. RR )  | 
						
						
							| 35 | 
							
								33 18 34
							 | 
							sylancr | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) e. RR )  | 
						
						
							| 36 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 37 | 
							
								18
							 | 
							recnd | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. CC )  | 
						
						
							| 38 | 
							
								
							 | 
							subeq0 | 
							 |-  ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) = 0 <-> 1 = z ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							necon3bid | 
							 |-  ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) )  | 
						
						
							| 40 | 
							
								36 37 39
							 | 
							sylancr | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) )  | 
						
						
							| 41 | 
							
								27 40
							 | 
							mpbird | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) =/= 0 )  | 
						
						
							| 42 | 
							
								18 35 41
							 | 
							redivcld | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) e. RR )  | 
						
						
							| 43 | 
							
								42
							 | 
							ltpnfd | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < +oo )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ w = 1 ) -> ( z / ( 1 - z ) ) < +oo )  | 
						
						
							| 45 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z < w )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							icopnfhmeo | 
							 |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) 1 ) ) Homeo ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							simpli | 
							 |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							a1i | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,] 1 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							0xr | 
							 |-  0 e. RR*  | 
						
						
							| 53 | 
							
								
							 | 
							1xr | 
							 |-  1 e. RR*  | 
						
						
							| 54 | 
							
								
							 | 
							0le1 | 
							 |-  0 <_ 1  | 
						
						
							| 55 | 
							
								
							 | 
							snunico | 
							 |-  ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) ) | 
						
						
							| 56 | 
							
								52 53 54 55
							 | 
							mp3an | 
							 |-  ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) | 
						
						
							| 57 | 
							
								51 56
							 | 
							eleqtrrdi | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( ( 0 [,) 1 ) u. { 1 } ) ) | 
						
						
							| 58 | 
							
								
							 | 
							elun | 
							 |-  ( z e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) | 
						
						
							| 59 | 
							
								57 58
							 | 
							sylib | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) | 
						
						
							| 60 | 
							
								59
							 | 
							ord | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z e. { 1 } ) ) | 
						
						
							| 61 | 
							
								
							 | 
							elsni | 
							 |-  ( z e. { 1 } -> z = 1 ) | 
						
						
							| 62 | 
							
								60 61
							 | 
							syl6 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z = 1 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							necon1ad | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z =/= 1 -> z e. ( 0 [,) 1 ) ) )  | 
						
						
							| 64 | 
							
								28 63
							 | 
							mpd | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,) 1 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantr | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z e. ( 0 [,) 1 ) )  | 
						
						
							| 66 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( 0 [,] 1 ) )  | 
						
						
							| 67 | 
							
								66 56
							 | 
							eleqtrrdi | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( ( 0 [,) 1 ) u. { 1 } ) ) | 
						
						
							| 68 | 
							
								
							 | 
							elun | 
							 |-  ( w e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) | 
						
						
							| 69 | 
							
								67 68
							 | 
							sylib | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) | 
						
						
							| 70 | 
							
								69
							 | 
							ord | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w e. { 1 } ) ) | 
						
						
							| 71 | 
							
								
							 | 
							elsni | 
							 |-  ( w e. { 1 } -> w = 1 ) | 
						
						
							| 72 | 
							
								70 71
							 | 
							syl6 | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w = 1 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							con1d | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w = 1 -> w e. ( 0 [,) 1 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							imp | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> w e. ( 0 [,) 1 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							isorel | 
							 |-  ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) )  | 
						
						
							| 76 | 
							
								50 65 74 75
							 | 
							syl12anc | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) )  | 
						
						
							| 77 | 
							
								45 76
							 | 
							mpbid | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) )  | 
						
						
							| 78 | 
							
								
							 | 
							id | 
							 |-  ( x = z -> x = z )  | 
						
						
							| 79 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = z -> ( 1 - x ) = ( 1 - z ) )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							oveq12d | 
							 |-  ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							ovex | 
							 |-  ( z / ( 1 - z ) ) e. _V  | 
						
						
							| 82 | 
							
								80 46 81
							 | 
							fvmpt | 
							 |-  ( z e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) )  | 
						
						
							| 83 | 
							
								65 82
							 | 
							syl | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							id | 
							 |-  ( x = w -> x = w )  | 
						
						
							| 85 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = w -> ( 1 - x ) = ( 1 - w ) )  | 
						
						
							| 86 | 
							
								84 85
							 | 
							oveq12d | 
							 |-  ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							ovex | 
							 |-  ( w / ( 1 - w ) ) e. _V  | 
						
						
							| 88 | 
							
								86 46 87
							 | 
							fvmpt | 
							 |-  ( w e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) )  | 
						
						
							| 89 | 
							
								74 88
							 | 
							syl | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) )  | 
						
						
							| 90 | 
							
								77 83 89
							 | 
							3brtr3d | 
							 |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) )  | 
						
						
							| 91 | 
							
								31 32 44 90
							 | 
							ifbothda | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) )  | 
						
						
							| 92 | 
							
								30 91
							 | 
							eqbrtrd | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							3expia | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) )  | 
						
						
							| 94 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = z -> ( x = 1 <-> z = 1 ) )  | 
						
						
							| 95 | 
							
								94 80
							 | 
							ifbieq2d | 
							 |-  ( x = z -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							pnfex | 
							 |-  +oo e. _V  | 
						
						
							| 97 | 
							
								96 81
							 | 
							ifex | 
							 |-  if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) e. _V  | 
						
						
							| 98 | 
							
								95 1 97
							 | 
							fvmpt | 
							 |-  ( z e. ( 0 [,] 1 ) -> ( F ` z ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) )  | 
						
						
							| 99 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = w -> ( x = 1 <-> w = 1 ) )  | 
						
						
							| 100 | 
							
								99 86
							 | 
							ifbieq2d | 
							 |-  ( x = w -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) )  | 
						
						
							| 101 | 
							
								96 87
							 | 
							ifex | 
							 |-  if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) e. _V  | 
						
						
							| 102 | 
							
								100 1 101
							 | 
							fvmpt | 
							 |-  ( w e. ( 0 [,] 1 ) -> ( F ` w ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) )  | 
						
						
							| 103 | 
							
								98 102
							 | 
							breqan12d | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) )  | 
						
						
							| 104 | 
							
								93 103
							 | 
							sylibrd | 
							 |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> ( F ` z ) < ( F ` w ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							rgen2 | 
							 |-  A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) )  | 
						
						
							| 106 | 
							
								
							 | 
							soisoi | 
							 |-  ( ( ( < Or ( 0 [,] 1 ) /\ < Po ( 0 [,] +oo ) ) /\ ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) /\ A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) ) ) ) -> F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) )  | 
						
						
							| 107 | 
							
								6 11 15 105 106
							 | 
							mp4an | 
							 |-  F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) )  | 
						
						
							| 108 | 
							
								
							 | 
							letsr | 
							 |-  <_ e. TosetRel  | 
						
						
							| 109 | 
							
								108
							 | 
							elexi | 
							 |-  <_ e. _V  | 
						
						
							| 110 | 
							
								109
							 | 
							inex1 | 
							 |-  ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V  | 
						
						
							| 111 | 
							
								109
							 | 
							inex1 | 
							 |-  ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V  | 
						
						
							| 112 | 
							
								
							 | 
							leiso | 
							 |-  ( ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) )  | 
						
						
							| 113 | 
							
								3 7 112
							 | 
							mp2an | 
							 |-  ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) )  | 
						
						
							| 114 | 
							
								107 113
							 | 
							mpbi | 
							 |-  F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) )  | 
						
						
							| 115 | 
							
								
							 | 
							isores1 | 
							 |-  ( F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) )  | 
						
						
							| 116 | 
							
								114 115
							 | 
							mpbi | 
							 |-  F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) )  | 
						
						
							| 117 | 
							
								
							 | 
							isores2 | 
							 |-  ( F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) )  | 
						
						
							| 118 | 
							
								116 117
							 | 
							mpbi | 
							 |-  F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) )  | 
						
						
							| 119 | 
							
								
							 | 
							tsrps | 
							 |-  ( <_ e. TosetRel -> <_ e. PosetRel )  | 
						
						
							| 120 | 
							
								108 119
							 | 
							ax-mp | 
							 |-  <_ e. PosetRel  | 
						
						
							| 121 | 
							
								
							 | 
							ledm | 
							 |-  RR* = dom <_  | 
						
						
							| 122 | 
							
								121
							 | 
							psssdm | 
							 |-  ( ( <_ e. PosetRel /\ ( 0 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) )  | 
						
						
							| 123 | 
							
								120 3 122
							 | 
							mp2an | 
							 |-  dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 )  | 
						
						
							| 124 | 
							
								123
							 | 
							eqcomi | 
							 |-  ( 0 [,] 1 ) = dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) )  | 
						
						
							| 125 | 
							
								121
							 | 
							psssdm | 
							 |-  ( ( <_ e. PosetRel /\ ( 0 [,] +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) )  | 
						
						
							| 126 | 
							
								120 7 125
							 | 
							mp2an | 
							 |-  dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo )  | 
						
						
							| 127 | 
							
								126
							 | 
							eqcomi | 
							 |-  ( 0 [,] +oo ) = dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) )  | 
						
						
							| 128 | 
							
								124 127
							 | 
							ordthmeo | 
							 |-  ( ( ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) )  | 
						
						
							| 129 | 
							
								110 111 118 128
							 | 
							mp3an | 
							 |-  F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) )  | 
						
						
							| 130 | 
							
								
							 | 
							dfii5 | 
							 |-  II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) )  | 
						
						
							| 131 | 
							
								
							 | 
							ordtresticc | 
							 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) )  | 
						
						
							| 132 | 
							
								2 131
							 | 
							eqtri | 
							 |-  K = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) )  | 
						
						
							| 133 | 
							
								130 132
							 | 
							oveq12i | 
							 |-  ( II Homeo K ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) )  | 
						
						
							| 134 | 
							
								129 133
							 | 
							eleqtrri | 
							 |-  F e. ( II Homeo K )  | 
						
						
							| 135 | 
							
								107 134
							 | 
							pm3.2i | 
							 |-  ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo K ) )  |