| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( m = M -> ( 0 ... m ) = ( 0 ... M ) ) |
| 2 |
1
|
oveq2d |
|- ( m = M -> ( RR* ^m ( 0 ... m ) ) = ( RR* ^m ( 0 ... M ) ) ) |
| 3 |
|
oveq2 |
|- ( m = M -> ( 0 ..^ m ) = ( 0 ..^ M ) ) |
| 4 |
3
|
raleqdv |
|- ( m = M -> ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) ) |
| 5 |
2 4
|
rabeqbidv |
|- ( m = M -> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } = { p e. ( RR* ^m ( 0 ... M ) ) | A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |
| 6 |
|
df-iccp |
|- RePart = ( m e. NN |-> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |
| 7 |
|
ovex |
|- ( RR* ^m ( 0 ... M ) ) e. _V |
| 8 |
7
|
rabex |
|- { p e. ( RR* ^m ( 0 ... M ) ) | A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) } e. _V |
| 9 |
5 6 8
|
fvmpt |
|- ( M e. NN -> ( RePart ` M ) = { p e. ( RR* ^m ( 0 ... M ) ) | A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |