| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccshftl.1 |  |-  ( A - R ) = C | 
						
							| 2 |  | iccshftl.2 |  |-  ( B - R ) = D | 
						
							| 3 |  | simpl |  |-  ( ( X e. RR /\ R e. RR ) -> X e. RR ) | 
						
							| 4 |  | resubcl |  |-  ( ( X e. RR /\ R e. RR ) -> ( X - R ) e. RR ) | 
						
							| 5 | 3 4 | 2thd |  |-  ( ( X e. RR /\ R e. RR ) -> ( X e. RR <-> ( X - R ) e. RR ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. RR <-> ( X - R ) e. RR ) ) | 
						
							| 7 |  | lesub1 |  |-  ( ( A e. RR /\ X e. RR /\ R e. RR ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) | 
						
							| 8 | 7 | 3expb |  |-  ( ( A e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) | 
						
							| 9 | 8 | adantlr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) | 
						
							| 10 | 1 | breq1i |  |-  ( ( A - R ) <_ ( X - R ) <-> C <_ ( X - R ) ) | 
						
							| 11 | 9 10 | bitrdi |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> C <_ ( X - R ) ) ) | 
						
							| 12 |  | lesub1 |  |-  ( ( X e. RR /\ B e. RR /\ R e. RR ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) | 
						
							| 13 | 12 | 3expb |  |-  ( ( X e. RR /\ ( B e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) | 
						
							| 14 | 13 | an12s |  |-  ( ( B e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) | 
						
							| 15 | 14 | adantll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) | 
						
							| 16 | 2 | breq2i |  |-  ( ( X - R ) <_ ( B - R ) <-> ( X - R ) <_ D ) | 
						
							| 17 | 15 16 | bitrdi |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ D ) ) | 
						
							| 18 | 6 11 17 | 3anbi123d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X e. RR /\ A <_ X /\ X <_ B ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) | 
						
							| 19 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) | 
						
							| 21 |  | resubcl |  |-  ( ( A e. RR /\ R e. RR ) -> ( A - R ) e. RR ) | 
						
							| 22 | 1 21 | eqeltrrid |  |-  ( ( A e. RR /\ R e. RR ) -> C e. RR ) | 
						
							| 23 |  | resubcl |  |-  ( ( B e. RR /\ R e. RR ) -> ( B - R ) e. RR ) | 
						
							| 24 | 2 23 | eqeltrrid |  |-  ( ( B e. RR /\ R e. RR ) -> D e. RR ) | 
						
							| 25 |  | elicc2 |  |-  ( ( C e. RR /\ D e. RR ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) | 
						
							| 26 | 22 24 25 | syl2an |  |-  ( ( ( A e. RR /\ R e. RR ) /\ ( B e. RR /\ R e. RR ) ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) | 
						
							| 27 | 26 | anandirs |  |-  ( ( ( A e. RR /\ B e. RR ) /\ R e. RR ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) | 
						
							| 28 | 27 | adantrl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) | 
						
							| 29 | 18 20 28 | 3bitr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X - R ) e. ( C [,] D ) ) ) |