Metamath Proof Explorer


Theorem iccshftli

Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccshftli.1
|- A e. RR
iccshftli.2
|- B e. RR
iccshftli.3
|- R e. RR
iccshftli.4
|- ( A - R ) = C
iccshftli.5
|- ( B - R ) = D
Assertion iccshftli
|- ( X e. ( A [,] B ) -> ( X - R ) e. ( C [,] D ) )

Proof

Step Hyp Ref Expression
1 iccshftli.1
 |-  A e. RR
2 iccshftli.2
 |-  B e. RR
3 iccshftli.3
 |-  R e. RR
4 iccshftli.4
 |-  ( A - R ) = C
5 iccshftli.5
 |-  ( B - R ) = D
6 iccssre
 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )
7 1 2 6 mp2an
 |-  ( A [,] B ) C_ RR
8 7 sseli
 |-  ( X e. ( A [,] B ) -> X e. RR )
9 4 5 iccshftl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X - R ) e. ( C [,] D ) ) )
10 1 2 9 mpanl12
 |-  ( ( X e. RR /\ R e. RR ) -> ( X e. ( A [,] B ) <-> ( X - R ) e. ( C [,] D ) ) )
11 3 10 mpan2
 |-  ( X e. RR -> ( X e. ( A [,] B ) <-> ( X - R ) e. ( C [,] D ) ) )
12 11 biimpd
 |-  ( X e. RR -> ( X e. ( A [,] B ) -> ( X - R ) e. ( C [,] D ) ) )
13 8 12 mpcom
 |-  ( X e. ( A [,] B ) -> ( X - R ) e. ( C [,] D ) )