Metamath Proof Explorer


Theorem iccshftr

Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccshftr.1
|- ( A + R ) = C
iccshftr.2
|- ( B + R ) = D
Assertion iccshftr
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X + R ) e. ( C [,] D ) ) )

Proof

Step Hyp Ref Expression
1 iccshftr.1
 |-  ( A + R ) = C
2 iccshftr.2
 |-  ( B + R ) = D
3 simpl
 |-  ( ( X e. RR /\ R e. RR ) -> X e. RR )
4 readdcl
 |-  ( ( X e. RR /\ R e. RR ) -> ( X + R ) e. RR )
5 3 4 2thd
 |-  ( ( X e. RR /\ R e. RR ) -> ( X e. RR <-> ( X + R ) e. RR ) )
6 5 adantl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. RR <-> ( X + R ) e. RR ) )
7 leadd1
 |-  ( ( A e. RR /\ X e. RR /\ R e. RR ) -> ( A <_ X <-> ( A + R ) <_ ( X + R ) ) )
8 7 3expb
 |-  ( ( A e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A + R ) <_ ( X + R ) ) )
9 8 adantlr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A + R ) <_ ( X + R ) ) )
10 1 breq1i
 |-  ( ( A + R ) <_ ( X + R ) <-> C <_ ( X + R ) )
11 9 10 bitrdi
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> C <_ ( X + R ) ) )
12 leadd1
 |-  ( ( X e. RR /\ B e. RR /\ R e. RR ) -> ( X <_ B <-> ( X + R ) <_ ( B + R ) ) )
13 12 3expb
 |-  ( ( X e. RR /\ ( B e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X + R ) <_ ( B + R ) ) )
14 13 an12s
 |-  ( ( B e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X + R ) <_ ( B + R ) ) )
15 14 adantll
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X + R ) <_ ( B + R ) ) )
16 2 breq2i
 |-  ( ( X + R ) <_ ( B + R ) <-> ( X + R ) <_ D )
17 15 16 bitrdi
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X + R ) <_ D ) )
18 6 11 17 3anbi123d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X e. RR /\ A <_ X /\ X <_ B ) <-> ( ( X + R ) e. RR /\ C <_ ( X + R ) /\ ( X + R ) <_ D ) ) )
19 elicc2
 |-  ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) )
20 19 adantr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) )
21 readdcl
 |-  ( ( A e. RR /\ R e. RR ) -> ( A + R ) e. RR )
22 1 21 eqeltrrid
 |-  ( ( A e. RR /\ R e. RR ) -> C e. RR )
23 readdcl
 |-  ( ( B e. RR /\ R e. RR ) -> ( B + R ) e. RR )
24 2 23 eqeltrrid
 |-  ( ( B e. RR /\ R e. RR ) -> D e. RR )
25 elicc2
 |-  ( ( C e. RR /\ D e. RR ) -> ( ( X + R ) e. ( C [,] D ) <-> ( ( X + R ) e. RR /\ C <_ ( X + R ) /\ ( X + R ) <_ D ) ) )
26 22 24 25 syl2an
 |-  ( ( ( A e. RR /\ R e. RR ) /\ ( B e. RR /\ R e. RR ) ) -> ( ( X + R ) e. ( C [,] D ) <-> ( ( X + R ) e. RR /\ C <_ ( X + R ) /\ ( X + R ) <_ D ) ) )
27 26 anandirs
 |-  ( ( ( A e. RR /\ B e. RR ) /\ R e. RR ) -> ( ( X + R ) e. ( C [,] D ) <-> ( ( X + R ) e. RR /\ C <_ ( X + R ) /\ ( X + R ) <_ D ) ) )
28 27 adantrl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X + R ) e. ( C [,] D ) <-> ( ( X + R ) e. RR /\ C <_ ( X + R ) /\ ( X + R ) <_ D ) ) )
29 18 20 28 3bitr4d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X + R ) e. ( C [,] D ) ) )