Description: Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccssico | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C [,] D ) C_ ( A [,) B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ico |  |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | |
| 2 | df-icc |  |-  [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) | |
| 3 | xrletr | |- ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A <_ C /\ C <_ w ) -> A <_ w ) ) | |
| 4 | xrlelttr | |- ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w <_ D /\ D < B ) -> w < B ) ) | |
| 5 | 1 2 3 4 | ixxss12 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C [,] D ) C_ ( A [,) B ) ) |