| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ne0i |
|- ( C e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
| 2 |
1
|
adantr |
|- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A (,) B ) =/= (/) ) |
| 3 |
|
ndmioo |
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
| 4 |
3
|
necon1ai |
|- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 5 |
2 4
|
syl |
|- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A e. RR* /\ B e. RR* ) ) |
| 6 |
|
eliooord |
|- ( C e. ( A (,) B ) -> ( A < C /\ C < B ) ) |
| 7 |
6
|
adantr |
|- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A < C /\ C < B ) ) |
| 8 |
7
|
simpld |
|- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> A < C ) |
| 9 |
|
eliooord |
|- ( D e. ( A (,) B ) -> ( A < D /\ D < B ) ) |
| 10 |
9
|
adantl |
|- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A < D /\ D < B ) ) |
| 11 |
10
|
simprd |
|- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> D < B ) |
| 12 |
|
iccssioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < C /\ D < B ) ) -> ( C [,] D ) C_ ( A (,) B ) ) |
| 13 |
5 8 11 12
|
syl12anc |
|- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( C [,] D ) C_ ( A (,) B ) ) |